Quick Start Guide for CLOP

Amir Reza Saffari Azar Alamdari
Institute for Computer Graphics and Vision
Graz University of Technology, Graz, Austria

amir@ymer.org

[sabelle Guyon
Clopinet Enterprise, 955 Creston road
Berkeley, CA 94708, USA
isabelle@clopinet.com

May 17, 2006

Contents

1 Introduction

1.1 What is CLOP?
1.2 How to install CLOP?
1.3 What I need to run CLOP?
1.4 How torun CLOP?
1.5 Compilation of SVC oo
1.6 More Details on Objects and Classes

2 Sample Program
2.1 What is inside the main.m program?

3 Data Structure

4 Defining Models

4.1 How to combine different models?
4.2 Preprocessing Methods oo oL
4.2.1 standardize
4.2.2 mnormalize
4.2.3 shiftnscale
4.2.4 pcextracto
4.25 subsampleo
4.3 Feature Selection Methods
4.3.1 82n e e e e
432 relief
433 85 . e
434 «rffs
4.3.5 sverfe ...
4.4 Classification Methods
4.4.1 kridge
4.4.2 SVC . .. e e
4.4.3 MAIVE o e e e e e e e e e e e e
444 meural
4.4.5 rf ..
4.4.6 gentleboost oo
4.5 Postprocessing Methods oL
4.5.1 bias e e e e e e e
4.6 Model Selection Methods
4.7 How to use model_examples.m?

5 Training and Testing

6 Credits

S UL UL U W W

SN}

10
11
12
12
12
13
13
13
14
14
14
15
15
15
16
16
17
17
17
17
18
18
18
19
19

20

20

1 Introduction

The main goal of this guide is to provide users a quick starting point for using
Challenge Learning Object Package (CLOP). This document will not cover in-
formation about the challenge, goals, rules, and etc, for those information please
refer to the challenge’s official website at:
http://clopinet.com/isabelle/Projects/modelselect/challenge/.

Since this package has been primarily developed for Performance Prediction
Challenge, this manual has a bias toward how to use CLOP for the purpose of
entering this competition easily. For those of you who consider it as a machine
learning software, it is very straightforward to generalize the ideas to other
problems. Please contact us, if you had any question, or want to contribute to
this package.

1.1 What is CLOP?

CLOP is a software package containing several ready-to-use machine learn-
ing algorithms which is developed during Performance Prediction Challenge
competition '. It is based on Spider package 2 from Department of Empiri-
cal Inference for Machine Learning and Perception, Max Planck Institute for
Biological Cybernetics, Tuebingen, Germany. CLOP has more algorithms pro-
vided by challenge organizers compared to Spider and it runs on MATLAB
http://www.mathworks.com, but it does not depend on any particular toolbox of
MATLAB. CLOP together with this manual can be downloaded from following
websites:

http://clopinet.com/isabelle/Projects/modelselect/Clop.zip
http://www.ymer.org/research/files/clop/Clop.zip.

Briefly, to provide a sufficient toolbox for the challenge, we did the following
modifications to the original Spider package:

e The entire spider is provided. Additionally we have added the following
algorithms as CLOP objects:
— bias
— chain

— ensemble

gentleboost
— gs
— kridge

LFor more information, please refer to challenge website or the following paper: Isabelle
Guyon, Amir Reza Saffari Azar Alamdari, Gideon Dror, and Joachim Buhmann, Perfor-
mance Prediction Challenge, to appear in IJCNN 2006 proceedings, IEEE World Congress
on Computational Intelligence, Vancouver, July 2006

2http://www.kyb.tuebingen.mpg.de/bs/people/spider/index.html

— naive

— neural

— normalize
— pc-extract
— relief

—rf

— rffs

— shift_n_scale
— standardize
— subsample
— sve

— sverfe

— s2n

This list can also be obtained by typing whoisclop at the MATLAB
prompt. Please refer to Section 4 for details.

e Some of the CLOP objects were not part of the original Spider; some
have been modified (methods overloaded) for several reasons, including
providing a simpler hyperparameterization (hiding some hyperparameters
as private), returning always a discriminant value as output, providing
more efficient implementations, and providing good default values to all
hyperparameters.

1.2 How to install CLOP?

First of all you should obtain CLOP from the website mentioned above, and
save it into any directory that you prefer. Then you have to open and extract
the zip file using any archiving software of your convenient, into any directory
that you want to install the CLOP. For the rest of this manual we will call this
destination directory, where the extracted files are stored, as MyProjects/CLOP/
and we will refer to MyProjects/ as root directory. For your case, you have to
replace it with the path to your CLOP directory. Now you have CLOP installed
on your computer. If you are running CLOP under Linux OS, you might need
to compile some of our models, please refer to Section 1.5.

The followings are the directory structures of CLOP and a brief description
of what is inside:

1. MyProjects/CLOP /challenge_objects/: Challenge objects provided by the or-
ganizers.

2. MyProjects/CLOP /sample_code/: Sample code and lots of different functions
written for the game.

3. MyProjects/CLOP/spider/: Original Spider is located here.

1.3 What I need to run CLOP?

Since CLOP runs under MATLAB, you have to have MATLAB running on your
computer. Additionally, in order to use sample codes provided in CLOP, you
will need to download the datasets from following websites:
http://clopinet.com/isabelle/Projects/modelselect/datasets/
http://wuw.ymer.org/research/clop.html.

For compatibility with the current settings inside the sample code, we sug-
gest you to have your datasets extracted into the following directory: MyPro-
jects/Data/. Of course you can choose other places, but then you have to modify
manually some parts of the main.m program which is located inside the sam-
ple_code directory, see bellow for more information.

1.4 How to run CLOP?

We will describe first how to run a sample program using CLOP. Start MAT-
LAB. Now change the current directory to where the sample code is located (in
our case MyProjects/CLOP /sample_code/) using:

>> cd MyProjects/CLOP/sample_code/
and run main.m program:
>> main

If you have the datasets in MyProjects/Data/, this probably will run the main
program successfully. You should notice from the MATLAB command window
that the program displays some license agreement terms first and then loads a
specific dataset and trains some algorithms on it, and finally tests the trained
models and saves the results. If you experienced some problems check that the
directory structure and path are correct. Please refer to Section 2 for more
information about the main program.

1.5 Compilation of SVC

The svc model is originally based on a C code, so depending on your machines
configuration, there might be a need for compilation. We have provided pre-
compiled versions for Windows and they usually run without problems. But for
Linux, you need to compile them again. The source code for svc is located in
CLOP /challenge_objects/packages/libsvm-mat-2.8-1. For Linux users, there are two
different Makefiles: Makefile_orig is the one which was provided by the authors of
the SVM package, and Makefile_amir is what I used on my machine to compile
it. The only difference is these two files is the name of the C compiler. So
you might need to go to one of these files and change environmental variables
in the beginning of the file according your system’s settings and which version

of C compiler you have installed. For Windows users, you can run make.m to
compile this object again, if needed. There is a README.TXT file which describes
installation procedure in more details.

1.6 More Details on Objects and Classes

Spider and CLOP both use object oriented programming style provided in MAT-
LAB, which are called classes. If you do not know anything about MATLAB
objects and/or object oriented programming, don’t be scared away. You can
learn how to use CLOP from examples, and in principle you will not need to
deal with objects and classes. But you may definitely benefit from reading the
(short) MATLAB help on objects. Briefly:

e An object is a structure (i.e. has data members), which has a number of
programs (or methods) associated to it. The methods modify eventually
the data members.

e The methods of an object myObject are stored in a directory named @my-
Object, which must be in your MATLAB path if you want to use the object
(e.g. call addpath).

e One particular method, called constructor is named myObject. It is called
(with eventually some parameters) to create a new object. For example:
>> myObjectInstance = myObject(someParameters);

e Once an instance is created, you can call a particular method. For exam-

ple:
>> myResults = myObjectMethod(myObjectInstance, someOtherParameters);

e Note that myObjectInstance should be the first argument of myObject-
Method. Matlab knows that because myObjectInstance is an instance of
myObject, it must call the method myObjectMethod found in the direc-
tory @myObject. This allows methods overloading (i.e. calling methods
the same name for different objects.)

e Inheritance is supported in MATLAB, so an object may be derived from
another object. A child object inherits from the methods of its parents.
For example:
>> myResults = myParentMethod(myObjectInstance, someOtherParameters);
In that case, the method myParentMethod is found in the parent directory
@myObjectParent, unless of course it has been overloaded by a method
of the same name found in @myObject.

Refer to MATLAB’s help for more information about classes and objects at
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_prog/index.html.
Some useful functions for dealing with classes and objects in MATLAB are:

e isa: checks the class type

class: returns the class
methods: returns all the methods
struct: lets you examine the data members

fieldnames: returns a cell array with the field names

2 Sample Program

2.1 What is inside the main.m program?

The main program is written to provide users with an easy-to-use template of
how to utilize CLOP and build their own model with it 3. Here we describe
what are the different parts of this program and how to modify them for your
own preferences.

1. Initialization This part of the code specifies some initial values for dif-
ferent variables which will be used through out the code:

e It starts with cleaning the variables from workspace, cleaning the
command window, and closing all figures. IF YOU DON’T WANT TO
LOOSE YOUR AVAILABLE DATA AND FIGURES, REMOVE THIS PART
OF THE CODE.

e The next section defines the directory structure of your system. It is
assumed that you want to have the following directories for your data
and results, which is well designed to keep track of different activities
and results required for a valid submission:

my_root: root directory where everything is there,
Example: MyProjects/.

data_dir: data directory where datasets are,
Example: MyProjects/Data/.

code_dir: code directory where CLOP is located,
Example: MyProjects/CLOP/.

resudir: directory where results will be stored,
Example: MyProjects/Results/.

zip dir: directory where zip files will be stored,
Example: MyProjects/Zipped,.

model dir: directory where models will be stored,
Example: MyProjects/Models/.

score_dir: directory where model scores will be stored,
Example: MyProjects/Scores/.

3With model, here we mean any combination of algorithms that one might define to apply
to a dataset. For example the sequence of normalizing the data, and then classifying it using
a neural network can be described as a model.

e ForceOverWrite defines if you want the system to overwrite your pre-
vious results (if they are available in results, models, and zip di-
rectories). The default value is 1, which will not disturb you for
overwriting questions, but be careful that in this case there is always
risk of loosing valuable information and results.

e DoNotLoadTestData defines if you want the system to load the test set
or not. This is used for cases where the size of test set is very large
and loading it to memory will not be efficient for training phase. The
default value is 1, which will not load the test sets.

e MergeDataSets defines if you want the system to merge training and
validation sets. This is useful when you have labels for validation
sets and you want to use them as extra training samples. The default
value is 0, which will not merge the training and validation sets.

e FoldNum defines if you want the system to do a k-fold cross-validation
or not, where k=FoldNum. The default value is 0, which will not
perform cross-validation.

e The next step is to define which datasets you want to train, you
can define this in the dataset cell array. For starting it is a better
idea to start with just one dataset and check how your models are
performing on it. In addition note that not always a single model is
a good choice for all datasets.

e In order to keep your models separate from your current code, by
default in training and testing section the program will call another
function named model_examples.m with a user chosen model name and
the dataset. You can easily define there which algorithms you would
like to try over datasets under the chosen name, without a need
to change the code in main program. This procedure will facili-
tate the model selection process too. For more information about
model_examples.m, please refer to Section 4. You can define your model
names in the modelset cell array.

e Now that you have defined your preferences, the system tries to gen-
erate and add the current directories (and their subsequent directo-
ries) to MATLAB’s search path. This will finalize the initialization
section.

2. Train/Test Here the code will start a loop for training and testing your
models over different datasets you have specified above. Each loop consists
of the following steps:

e Loading the dataset and creating data structures: Since the original
datasets provided from challenge website are stored in text files, this
section will load all of them into proper data structures suitable for
MATLAB. Because you will need these variables in your later exper-
iments again and the process of loading them from text files usually
takes longer time compared to loading variables from a MATLAB

save file (.mat format), it also saves the data structures in the same
data locations. The next time that you run the code over the same
dataset, this section will automatically check whether the .mat for-
mat is available or not, and in the case of existing file it will load
data from that .mat file, resulting in a very low loading time. Please
refer to Section 3 for more information about the data variables.

e Looping over different models: With the modelset array you can
define several models to be tested over different datasets. This part of
the code starts a loop over those models, which includes the following
parts:

First of all, it calls model_examples.m function with the model
and dataset names, in order to get back a valid CLOP or Spider
model. Please refer to Section 4 for more information on how to
define valid models.

If you have defined the algorithm to perform a cross-validation
step, the system starts this step and trains the model FoldNum
times.

Now that the program has the data and model, it is time to
train the algorithms specified within the model, and obtain the
training results. This is done simply by calling train function
with model and training data.

After training, it will calculate the balanced error rate of the
trained model, followed by computing a very tentative guess for
test BER.

Now that the model is trained over the training set, it is time for
testing it over validation and test sets, this task is accomplished
easily by calling test function with model and proper data set.
The next step is to save the results into specified directories
in appropriate official format which can be sent directly to the
challenge website. It follows by saving the models too, which are
needed for a valid final entry of the game.

3. Make Archive The finishing part of the code is to make a zip archive
of all necessary files needed for submission to the challenge website for
verification.

As it can be seen from these steps, the main program contains almost every-
thing that a users needs to run some machine learning algorithms and produce
proper results. We suggest you to make a backup copy of this program, and
then modify different parts of it according to your interests.

3 Data Structure

The data object that has been used in CLOP, consists of the following fields
(let’s name the data variable D):

1. D.train: training data is stored here.
2. D.valid: validation data is stored here.
3. D.test: test data is stored here.

Each of these fields has two additional subfields, called .X and .Y. In .X field
the raw data are stored in a matrix format with example arranged in rows and
features in columns. The .Y field contains the labels for the corresponding set
of examples in a one dimensional vector format. Note that if the labels are not
provided in the datasets (for challenge datasets: always for test set and just
for validation set before release of validation labels), then this field will be an
empty vector. Additionally one can get statistics about the data using function
data_stats(D).

4 Defining Models

For the purpose of the challenge, a valid model is defined as a combination of
learning objects from a predefined list (type whoisclop at the MATLAB prompt
to get a the full list of allowed CLOP learning objects; to check that a particular
object is a valid CLOP object, type isclop(object)). If you want to use CLOP
for non-challenge purposes, you can freely use whole Spider package too, which
offers other algorithms too.

A typical model usually (but not necessarily) consists of the following parts?:

1. Preprocessing
2. Feature Selection
3. Classification
4. Postprocessing

The simplest model for a classification task can be just a classifier. Defin-
ing a model is a very simple task within CLOP framework. For example the
following code makes a neural network classifier available with its default hy-
perparameters:

>> myClassifier = neural

and this code defines a linear support vector machine classifier with a shrink-
age (regularization) value of 0.1:

>> myClassifier = svc({’shrinkage=0.1"})

4Note that the two first steps should not necessarily be in this order. In particular, since
feature selection changes the number of features, normalization, which is a preprocessing
method, may need to be done/redone after feature selection

10

Note the way that a hyperparameter value (shrinkage in this case) is passed
to the object constructor (svc in this case). This is the general method to
assign different values for hyperparameters rather than their default values. If
you want to know what are the hyperparameters of each model, you can simply
type >> help OBJECTNAME in MATLAB command window, where 0BJECT_NAME is
the name of a model. This will bring up information available for each model
together with the list of hyperparameters used inside the model.

In general, there are two types of hyperparameters for each model: one is
named as public and the other is private. For the competition, only the public
hyperparameters can be tuned. The method to do that is via the constructor,
as showed in examples. To find out which hyperparameters are public, use
default (OBJECTNAME) in MATLAB command window. It is also possible to set
the hyperparameters directly (outside of the constructor), but do this at your
own risks since this may generate inconsistencies.

4.1 How to combine different models?

There exist two different ways to combine several models with each other. The
first one is serial combination where outputs of each model is fed to the in-
puts of the next model. For example suppose that we want to normalize the
data and then classify it with a neural network. This is a serial combination of
algorithms where output of normalization step is supposed to be an input for
neural network classifier. This type of combinations can be done easily using
chain object. The following is the sample code you would need for the example
described above:

>> myModel = chain({normalize , neural})

Now when you train or test myModel with an input data, first the normalize
algorithm will operate on the data and then it will pass the resulted data to
neural object to classify it:

>> [Outputs, myModelTrained] = train(myModel, D.train)

In this example it is supposed that D.train contains the training data. The
myModelTrained is the resulted model after training, while Outputs contains infor-
mation about predicted labels and other output variables. For more information
about training and testing models, please refer to Section 5.

The other way of combining different algorithms is to combine different mod-
els with each other in a parallel style. This is usually known as ensemble meth-
ods in machine learning, and the goal is often to combine outputs of different
learning algorithms to improve the classification performances. For example we
want to have two classifiers, one neural network and one naive Bayes, trained
on the same data, and then add their outputs to create the final results. The
following code will generate the desired model and train it on D.train set:

11

>> myNeural = chain({normalize, neural({’units=3’, ’balance=1’})})
>> myNaive = naive

>> myClassifier = ensemble({myNeural, myNaive})

>> [Outputs, myModelTrained] = train(myClassifier, D.train)

Note that for ensemble methods there are more sophisticated algorithms to
train and combine outputs of different classifiers, like bagging and boosting. We
consider those methods as individual classifiers and they will be described in
next sections in details.

Note that the nth model of a chain or ensemble can be easily accessed with
the curly bracket notation. For example in the following model, we want to ac-
cess to the neural object, which is the 2nd element in chain and 3rd in ensemble
object:

>> myChain = chain({normalize, ensemble({svc, kridge, neural}), bias})
chain

{

1:normalize center=0
2:ensemble
3:bias option=1
}
>> c{2}{3}

neural units=10 shrinkage=1e-014 balance=0 maxiter=100

4.2 Preprocessing Methods

The following section shows different preprocessing models available within
CLOP.

4.2.1 standardize

e Description: Standardization of the features (the columns of the data
matrix are divided by their standard deviation; optionally, the mean is
first subtracted if center=1). Note that a lot of methods benefit from this
preprocessing, particularly neural networks.

e Hyperparameters: center € {0,1}
e Default Values: center =1

¢ Example: >> myModel = chain({normalize({’center=1’}) , naive})

4.2.2 normalize

e Description: Normalization of the lines of the data matrix (optionally
the mean of the lines is subtracted first if center=1). Some methods benefit

12

from this preprocessing, particularly the polynomial kernel methods. It
is sometimes best to normalize after feature selection or both before and
after.

e Hyperparameters: center € {0,1}
e Default Values: center =0

e Example: >> myModel = chain({standardize({’center=1’}) , naive})

4.2.3 shift_n_scale

e Description: Performs this transformation globally on the data matrix
X = (X — of fset)/scale, while offset and factor are set as hyperparame-
ters, or subject to training. Optionally performs in addition log(1 4+ X).

e Hyperparameters: of fset € [—o0,00], factor € [0F,00], take log €
{0,1}

e Default Values: of fset = min(X), factor = max(X —of fset), take_log =
0

e Example: >> myModel = chain({shift n scale({’take log=1’}) , naive})

4.2.4 pc_extract

e Description: Extract f_max number of features with principal component
analysis.

e Hyperparameters: f_max € [0, 0]
e Default Values: f max = oo

e Example: >> myModel = chain({pc_extract ({’f max=50’}) , naive})

4.2.5 subsample

e Description: Make a subset of p_max number of the training patterns.
It is possible to specify which patterns should be included in the resulting
subset, by giving additional input to the subsample function which contains
the indexes of those patterns. With balance hyperparameter you can
specify whether the resulting subset should be a balanced set according
to the number of class members or not. Note that subsampling can be
combined with the ensemble object to implement bagging, for example®:

5Note that this does not take advantage of the out-of-bag examples to compute an estimate
of the test error, but can be considered as an approximation to bagging algorithm

13

for k=1:100
baseModel{k}=chain({subsample({’p.max=1000’, ’balance=1’}), kridge});
end
myModel = chain({standardize, ensemble(baseModel, ’signed output=1’),
bias});

e Hyperparameters: p_max € [0, 00|, balance € {0,1}
e Default Values: p_max = oo, balance = 0

e Example: >> myModel = chain({subsample({’p-max=100’}) , naive})

4.3 Feature Selection Methods

The following section shows different feature selection models available within
CLOP. The following notation for hyperparameters is commonly used for all
feature selection algorithms:

e f max defines the maximum number of features to be selected using the
target model.

e wmin defines a threshold on the ranking criterion W of the target model.
If W(i) <= w_min, the feature i is eliminated. W is vector with non-
negative values, so a negative value of w_min means all the features are
kept.

4.3.1 s2n

e Description: Signal-to-noise ratio coefficient for feature ranking. This
method ranks features with the ratio of the absolute difference of the class
means over the average class standard deviation. This criterion is similar
to the Fisher criterion, the Ttest criterion, and the Pearson correlation
coefficient. It can be thought of as a linear univariate feature ranking
method. The top ranking features are selected and the new data matrix
returned. The hyperparameters can be changed after construction of the
object to allow users to vary the number of features without retraining.

e Hyperparameters: f max € [0, o0], w_min € [—00, 0]
e Default Values: f max = co, w_min = —oo

o Example: >> myModel = chain({s2n({’f max=100’}) , naive})

4.3.2 relief

e Description: This method ranks features with the Relief coefficient. Re-
lief is a method based on the nearest neighbors scoring features according

14

to their relevance, in the context of others. It is a non-linear multivari-
ate feature ranking method. In our implementation, it is slow for large
numbers of patterns because we compute the entire distance matrix. We
chunk it if it is very large, to avoid memory problems. The top ranking
features are selected and the new data matrix returned. The hyperpa-
rameters can be changed after construction of the object to allow users to
vary the number of features without retraining. k_num defines the number
of neighbors in the Relief algorithm.

e Hyperparameters: f max € [0, c0], w.min € [—00, 00], k-num € [0, o0
e Default Values: f max = co, w_min = —oo, k.num =4

e Example: >> myModel = chain({relief ({’fmax=100’, ’k.num=5’}) , naive})

4.3.3 gs

e Description: Forward feature selection with Gram-Schmidt orthogonal-
ization. This is a forward selection method creating nested subsets of
complementary features. The top ranking features are selected and the
new data matrix returned. Note that if you want to change the value of
f max after training, it cannot be set to a larger number than the number
£ max used for training (or it will be chopped at f_max).

e Hyperparameters: f_max € [0, 0]
e Default Values: f max = oo

e Example: >> myModel = chain({gs({’fmax=100’}) , naive})

4.3.4 rffs

e Description: Random Forest used as feature selection filter. The child
argument, which may be passed in the argument array, is an rf object,
with defined hyperparameters. If no child is provided, an rf with default
values is used.

e Hyperparameters: fmax € [0, 00|, w_min € [—00, 00|, child
e Default Values: f max = co, w_min = —oo, child=rf

e Example: >> myModel = chain({rffs({’wmin=0.2’}) , naive})

4.3.5 sverfe

e Description: Recursive Feature Elimination filter using SVC. This is a
backward elimination method creating nested subsets of complementary
features. The child argument, which passed in the argument array, is an
svc object, with defined hyperparameters. If no child is provided, a linear
svc with default values is used.

15

e Hyperparameters: f_max € [0, oo], child
e Default Values: f_max = oo, child=svc

e Example: >> myModel = chain({svcrfe({’f.max=100’}) , naive})

4.4 Classification Methods

The following section shows different classification models available within CLOP.
The following notation for hyperparameters is commonly used for all classifica-
tion algorithms:

e For kernel methods, the general kernel equation is
k(x1,x2) = (coefO + x1.29) 9" exp(—gamma ||z; — a:2||2)

Note that (.) is vector dot product operator. Some examples of mostly
used kernels are:

1. Linear Kernel: degree = 1,coef0 = 0,gamma = 0, k(z1,22) =
(x1.22)
2. Polynomial degree N Kernel: degree = N,coef0 = a,gamma = 0,
k(z1,29) = (a+ x1.20)N
3. RBF Kernel: degree = 0,coef0 = 0,gamma = =, k(z1,22) =
eap(—|lz1 —22]*)
e units usually defines the number of substructures needed for each algo-
rithm. For example, in the case of a neural object, it defines the number

of hidden neurons, while in boosting methods, it is the number of weak
learners to be used in the algorithm.

e balance is a flag used to specify if the algorithm should balance the number
of class members before training using subsampling method.

e shrinkage defines usually the regularization parameter used in each algo-
rithm.
4.4.1 kridge

e Description: Kernel ridge regression. This object trains a regression
learning machine using the least square loss and a weight-decay or ridge
specified by the shrinkage parameter.

e Hyperparameters: coef0 € [0, 0], degree € [0,00], gamma € [0, o0,
shrinkage € [0, oo}, balance € {0,1}

e Default Values: coef0 = 1, degree = 1, gamma = 0, shrinkage = le—14,
balance = 0

e Example: >> myModel = chain({normalize , kridge({’coef0=0.1’, ’degree=2’})})

16

4.4.2 svc

e Description: Support vector classifier. This object trains a 2-norm SVC,
i.e. the shrinkage parameter is similar to the ridge in kridge. There is no
box constraint (bound on the alphas).

e Hyperparameters: coef0 € [0,00], degree € [0,00], gamma € [0, 0],
shrinkage € [0, 00]

e Default Values: coef0 = 0, degree = 1, gamma = 0, shrinkage = le — 14

e Example: >> myModel = chain({normalize , svc({’degree=0’, ’gamma=0.

’shrinkage=0.1"})1})

4.4.3 naive

e Description: Naive Bayes classifier. Two separate implementations are
made for binary and continuous variables (the object switches automati-
cally). For binary variables, the model is based on frequency counts; for
continuous variable, the model is a Gaussian classifier.

e Hyperparameters: None
e Default Values: None

e Example: >> myModel = chain({normalize , naive})

4.4.4 neural

e Description: Neural networks classifier. Two layer neural network (a
single layer of hidden units). The shrinkage corresponds to a weight decay
or the effect of a Bayesian Gaussian prior. units is the number of hidden
neurons, and maxiter defines the number of training epochs.

e Hyperparameters: units € [0, o], maxiter € [0, oo, shrinkage € [0, o],
balance € {0,1}

e Default Values: units = 10, maxiter = 100, shrinkage = le — 14,
balance =0

e Example: >> myModel = chain({normalize , neural({’units=5’})})

4.4.5 rf

e Description: Random Forest classifier. This object builds an ensemble
of tree classifiers with 2 elements of randomness: (1) each tree is trained
on a randomly drawn bootstrap subsample of the data (approximately 2/3
of the examples); (2) for each node, the feature to split the node is selected
among a random subset of all features. units is the number of trees, and
mtry defines the number of candidate feature per split.

17

e Hyperparameters: units € [0, co], mtry € [0, o0]
e Default Values: units = 100, mtry = v/ Feat_Num

e Example: >> myModel = chain({normalize , rf({’units=200’})})

4.4.6 gentleboost

e Description: This object builds an ensemble of classifiers (called weak
learners) by sequentially adding weak learners trained on a subsample of
the data. The subsamples are biased toward the examples misclassified
by the previous weak learner. Gentleboost is a variant of the adaboost
algorithm, which is less sensitive to data outliers because it puts less weight
on misclassified examples and weighs the weak learners evenly. The base
classifier is defined separately and can be any of the classification methods
defined above. units is the number of weak learners, subratio defines the
ratio of subsampling compared to the original dataset, and rejNum is the
number of different trials to get a weak learner before stopping the whole
iteration, if the weighted error of a weak learner is over 0.5.

e Hyperparameters: units € {1,2,...,00}, subratio € [0,1], rejNum €
{1,2,...,00}, balance € {0,1}

e Default Values: units = 5, subratio = 0.9, rejNum = 3, balance =1

e Example: >> myBase = naive
>> myModel = chain({normalize , gentleboost(myBase, {’units=10’})})

4.5 Postprocessing Methods

The following section shows different postprocessing models available within
CLOP.

4.5.1 bias

e Description: Bias optimization. It calculates a threshold value that will
be applied to the outputs of classifier, optimizing several factors listed
bellow. The option can be one of following items:

1. minimum of the BER.
2. break-even-point between sensitivity and specificity.

3. average of the two previous results if they do not differ a lot, otherwise
Zero.

4. values that gives the same fraction of positive responses on the test
data than on the training data (transduction).

e Hyperparameters: option € {1,2,3,4}

18

e Default Values: option =1

e Example: >> myModel = chain({normalize({’center=1’}) , naive, bias({’option=2’})})

4.6 Model Selection Methods

In the main.m example script we provide, we illustrate how the Spider can be
used to perform a selection of the CLOP models. In the script, we use the Spider
object cv, which implements the traditional k-fold cross-validation algorithm.
Since this is a model selection contest, we encourage you to develop your own
algorithms for this purpose. The main goal of developing CLOP was to provide
the participants with a diverse set of learning algorithms that should be sufficient
to achieve competitive results. By restricting them to the use of CLOP models,
they can focus on model selection rather than spending time tuning their own
classification algorithms. So use this opportunity and develop your ideas for
better model selection systems. This may include developing better:

e hyperparameter search strategies

e model architectures (by combining CLOP modules with combinations of
chains and ensembles)

e model assessment (e.g. cross-validation, complexity penalization, etc.)
The Spider provides a few objects implementing some of these tasks:

e param: this object allows you to specify ranges of parameter values

e cv: this object implements k-fold cross-validation

e gridsel: this object integrates the functions of param and cv to perform
model selection with grid search

It is noteworthy that the model selection game is as much an ensemble
method game as it is a model selection game, since hyperparameter selection
can to a large extent be circumvented by using an ensemble of methods.

Note that objects like r2w2_sel and bayessel are specific to the Spider imple-
mentation of SVMs, which is different from the one of CLOP. r2w2_sel concerns
feature selection. Please do not use it since we restricted the feature selection
methods to the ones provided in this manual. bayessel adjust the C hyperpa-
rameter in 1-norm SVM. This is not useful to CLOP users, since in CLOP, we
provide only a 2-norm SVM.

4.7 How to use model_examples.m?

In order to keep the model creation separate from the main code that might be
used by participants, we use another program which is called model_examples.m.
Using this scheme, one can easily define lots of different models without a need
to modify the main.m program. This style is not necessary but we recommend
you to follow the proposed structural system.

19

In model_examples.m, the first section is used to checks empty calls of this
function. Next, there exist several proposed models and methods which some
of them are common for all datasets, and some has specific instructions to deal
with different characteristics of different datasets. Check this section carefully
to get a general idea of how to create and write your own models. Note that
the proposed models are not optimal for this challenge, and we have created
them just to show different capabilities of CLOP. In order to be competitive in
the challenge, you would need to create your models and tune their parameters
according to any model selection strategy that you have in your mind.

5 Training and Testing

After you have defined your models, you can easily train them using train com-
mand as bellow:

>> myModel = chain({normalize({’center=1’}) , naive, bias({’option=2’})})
>> [TrainOutputs, myModelTrained] = train(myModel, D.train)

In this example, we assume that there is a data object named D already avail-
able in the workspace which contains training data and labels. The train func-
tion returns the original model with tuned parameters in myModelTrained, while
TrainOutputs will have predicted labels as .X subfield, (TrainOutputs.X) and
original target training labels as .Y subfield, (TrainOutputs.Y). The TrainOutput
object can later be used to evaluate the performance of training phase, like
computing the BER, AUC, and etc.

After training a model, we usually are interested in testing the algorithm
over unseen data examples. This can be easily done with test function as fol-
lows:

>> TestOutputs = test(myModelTrained, D.test)

Now the TestOutput has the predicted labels again in .X subfield, but since
the labels for test sets will not be provided, the .Y field will be empty. The
TestOutput.X can be passed further to other functions such as save_outputs to
generate output files which are suitable to send directly to online website.

6 Credits

The organization of this competition was a team effort to which many have par-
ticipated. We are particularly grateful to Olivier Guyon (MisterP.net) who im-
plemented the back-end of the web site. The front-end follows the design of Steve
Gunn (University of Southampton), formerly used for the NIPS 2003 feature
selection challenge. We are thankful to Bernd Fischer (ETH Zurich) for admin-
istering the computer resources. Other advisors and beta-testers are gratefully

20

acknowledged: Gideon Dror, Joachim Buhmann, Yoshua Bengio (University of
Montreal), Asa Ben-Hur (Colorado State university), Lambert Schomaker (Uni-
versity of Groningen), and Vladimir Vapnik (NEC, Princeton). The Challenge
Learning Object Package (CLOP) is based on code to which many people have
contributed: The creators of the spider: Jason Weston, Andre Elisseeff , Gikhan
Bakir , Fabian Sinz. The developers of the packages attached: Chih-Chung
Chang and Chih-JenLin Jun-Cheng (LIBSVM), Chen, Kuan-Jen Peng, Chih-
Yuan Yan, Chih-Huai Cheng, and Rong-En Fan (LIBSVM Matlab interface),
Junshui Ma and Yi Zhao (second LIBSVM Matlab interface), Leo Breiman
and Adele Cutler (Random Forests), Ting Wang (RF Matlab interface), Ian
Nabney and Christopher Bishop (NETLAB), Thorsten Joachims (SVMLight),
Ronan Collobert (SVM Torch II), Jez Hill, Jan Eichhorn, Rodrigo Fernandez,
Holger Froehlich, Gorden Jemwa, Kiyoung Yang, Chirag Patel, Sergio Rojas.
This project is supported by the National Science Foundation under Grant NO.
ECS-0424142. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation. Predicant biosciences, Microsoft, and
Unipen provided additional support permitting to grant prizes to the winners.

21

