
Relation Extraction from Tables using Artificially Generated Metadata

Gaurav Singh
Amazon

singhgrv@amazon.co.uk

Siffi Singh
Amazon

siffis@amazon.co.uk

Joshua Wong
Amazon

joshuax@amazon.co.uk

Amir Saffari
Amazon

amsafari@amazon.co.uk

Abstract

Relation Extraction (RE) from tables is the
task of identifying relations between pairs of
columns of a table. Generally, RE models
for this task require labelled tables for train-
ing. These labelled tables can also be gen-
erated artificially from a Knowledge Graph
(KG), which makes the cost to acquire them
much lower in comparison to manual annota-
tions. However, unlike real tables, these syn-
thetic tables lack associated metadata, such as,
column-headers, captions, etc; this is because
synthetic tables are created out of KGs that do
not store such metadata. Meanwhile, previous
works have shown that metadata is important
for accurate RE from tables. To address this
issue, we propose methods to artificially cre-
ate some of this metadata for synthetic tables.
Afterward, we experiment with a BERT-based
model, in line with recently published works,
that takes as input a combination of proposed
artificial metadata and table content. Our em-
pirical results show that this leads to an im-
provement of 9%-45% in F1 score, in absolute
terms, over 2 tabular datasets.

1 Introduction

Tables are a very useful tool in information repre-
sentation because information can be stored and
presented more concisely in a table compared to
free text. Due to their ease and usefulness, a large
number of tables are being produced and made
available on the web (Zhang and Balog, 2020) ev-
eryday. But tables are not just restricted to web,
in fact, a lot of data across numerous domains is
stored in tabular format. Not surprisingly then ta-
bles are a very large source of knowledge (Lehm-
berg et al., 2016) for many real-world tasks.

Luckily, information contained in a table already
has some implicit structure; there is a leading en-
tity in every row, called the subject entity, and all
other cells in the row are connected to this lead-
ing entity via some relation. However, despite this

Figure 1: An example of relation extraction from tables.
Here dbo:distribution is the dbpedia relation between
Title and Distributor columns.

implicit structure, the information can not be eas-
ily converted to knowledge, since we do not know
relations between columns w.r.t. a specific ontol-
ogy. Therefore, to ingest this knowledge into KG,
we need to map relations between columns to rela-
tions defined in the KG ontology (Ritze et al., 2015;
Ritze and Bizer, 2017), classify the entity-type and
perform entity-linking. In this work we focus on
one of these tasks i.e. Relation Extraction.

In order to train a model for mapping relations
between columns to KG relations, we require a
dataset of tables labelled with KG relations. But, it
would be very expensive to manually annotate ta-
bles for training such a model, and therefore, most
current RE models are trained on labelled tables
generated artificially from the KG (Jiménez-Ruiz
et al., 2020; Cutrona et al., 2020). To generate
such a synthetic table, a fixed number (say, 10) of
facts triples corresponding to a specific relation are
repetitively sampled from the KG, and these are
then used to generate 2-column tables, such that the
entities on the left of relation form the left-column,
and entities on right form the right-column.

However, these synthetic tables usually lack two
crucial pieces of information that can provide use-
ful signals for RE, namely: 1) context; 2) column-
headers. First is a piece of text connecting different

ar
X

iv
:2

10
8.

10
75

0v
3 

 [
cs

.C
L

] 
 6

 S
ep

 2
02

1



entities in the table. More specifically, an unstruc-
tured piece of text that implicitly or explicitly de-
scribes how two values in the same row are related.
For instance, the sentence: "Paris is the capital city
of France", connects Paris and France by the rela-
tion capital. In real tables this information might
be contained in the text present before or after the
table, or in the captions, but since this context is not
contained in KGs, it is also absent from synthetic
tables created from KGs. Second is the headers for
the columns of these synthetic tables. Most KGs
do not contain information about possible column-
headers for entities, and therefore, synthetic tables
created from KGs do not contain column-headers
as well. We should mention that KGs do contain
information about entity-types, but these are con-
ceptually different from column-headers, and can
not be used as their replacement.

Previously, there have been attempts (Deng et al.,
2020; Yin et al., 2020) to resolve these issues by
using real tables with metadata, whose entities are
already linked to some public KG, such as DB-
pedia, as the training set. Unfortunately, such an
approach does not work when the predictions are
required w.r.t. a private or specific KG, as it would
require extensive annotations. Another approach
(Wang et al., 2021) creates one-to-one mappings
between relations of DBpedia and the target KG,
and uses that mapping to convert relation predic-
tions over DBpedia to target KG. However, such
mappings require manual effort from trained an-
notators, and consequently, they are expensive to
create. Also, they are often impractical due to sig-
nificant ontological differences between the two
KGs.

To address these issues, we propose two tech-
niques to artificially create context and column-
headers for synthetic tables generated from an arbi-
trary KG. Afterward, we experiment with a neural
model that takes as input the table and artificially
created metadata for relation prediction. Our model
is in line with recently published works (Yin et al.,
2020; Deng et al., 2020) on modelling tabular data
structures. We perform experiments over 2 tabular
datasets, consisting of 1 public benchmark dataset
and 1 private dataset. Our empirical results show
that the proposed method leads to very large im-
provements in RE performance over both datasets.
Our contributions can be summarized as follows:

• Propose methods to generate context &
column-headers for synthetic tables

Figure 2: An illustration of a sub-graph that represents
the equivalent of the table in Fig 1

• Show that proposed artificial metadata leads
to large improvements in RE performance

2 Methods

2.1 Generating Synthetic Tables

Tables can be viewed as sub-graphs of a KG, with
nodes as the denotations of entities or literals. For
example, the table from Fig 1 can be viewed as the
sub-graph in Fig 2. To generate synthetic tables, we
retrieve all sub-graphs with target relations. After-
ward, we convert these sub-graphs to fact triples of
the form: (entity1, relation, entity2) and group
them by relations. Thereafter, we first randomly
draw the number of rowsR from the interval [5, 10]
to simulate variable size of real web-tables. We
then select R triples without replacement from the
set of triples for that relation. Finally, we create
2-column R-row tables using these R triples, such
that the left-entities from the first column, and the
right-entities form the second column.

To generate tables marked with the negative re-
lation i.e. a special relation that denotes no rela-
tion or unknown relation, we pick left-column of
a randomly chosen table, and combine it with the
right-column of another randomly chosen table, to
form a synthetic table.

Unlike multi-column real tables, we create 2-
column synthetic table for 2 reasons: 1) relation be-
tween two columns is largely independent of other
columns, 2) non-trivial to generate multi-column
synthetic tables.

2.2 Generating Metadata

Context We download the entire corpus of full-
text articles from English language Wikipedia and
cleanup the text files of any HTML tags and blank
spaces. Afterward, we index all the paragraphs in
the corpus using an Elastic-Search (ES) cluster.

To retrieve context for a given pair of entities
(e1, e2), we first perform a logical AND query on
the ES cluster to retrieve all the paragraphs that
contain a mention of the two entities. If more than
10 such paragraphs are retrieved then we select the
top-10 based on the score from ES cluster. We filter



Figure 3: A schematic representation of the model architecture. The model takes as input column-pair, context,
and headers to predict relation-type.

out all the returned paragraphs that have a length
less than the added lengths of the two entities plus
a constant i.e. len(e1) + len(e2) + 3; this is to
remove short noisy contexts that do not establish
relation between e1 and e2. Thereafter, we select
the top scoring paragraph and search for the top-
most sentence within it that mentions both e1 and
e2. If we find such a sentence then we select it as
the final context; otherwise, we select the topmost
sentence that mentions e1 and similarly, topmost
sentence that mentions e2, and concatenate the two
sentences to form the final context.

Column-headers We randomly sample 10% of
English relational tables in the WDC dataset
(Lehmberg et al., 2016) i.e. 5 million tables. We
use this sampled set to create an entity-to-header
mapping between each entity and the header of
the column in which that entity appears using a
NoSQL database. To generate header of a column,
we extract the most frequent headers for that entity
in the entity-to-header table. We repeat this for all
entities in that column, and collect one potential
header candidate for each row. Afterward, we se-
lect the most frequent header across all rows in that
column, and in case of a tie for the top place, we
randomly select one of the top headers.

2.3 Model Architecture

Our proposed model takes as input: 1) a column-
pair; 2) wikipedia context for entity-pairs; 3)
column-headers, and outputs: 1) relation-type (Fig
3).

We linearize each row by joining the two cells
and corresponding context using the [SEP] token.
We prepend a [CLS] token to the linearized row, to-
kenize it using BERT subword tokenizer, and then

pass it to a pretrained BERT (Devlin et al., 2019)
model. We take the vector representation of the
[CLS] token as the representation of the row. We
then pass the representation for all rows through a
Transformer encoder to get a vector representation
for the entire table. The transformer encoder layer
performs attention induced averaging over rows to
reduce noise in the entities and retrieved contexts.
Afterward, we pass this through a fully-connected
layer to get prediction scores over all relations.

In parallel, we linearize column headers by join-
ing the two headers using the [SEP] token. We
prepend the [CLS] token to the linearized header
row. Afterward, we pass this through a pretrained
BERT encoder to obtain a vector representation
for the combined headers. We then pass this rep-
resentation through a fully-connected layer to get
prediction scores over all relations.

Finally, we add the scores obtained from rows
and headers to get final prediction scores. At the
end we choose the relation with the highest score
as the predicted relation-type for the column-pair.

3 Experimentation

3.1 Dataset

Public dataset We evaluate our model on the
public benchmark T2Dv2 (Chen et al., 2019)
dataset. It contains manually annotated mappings
between column-pairs in Web-tables and relations
in DBpedia KG. It consists of 779 tables, 89 re-
lations, and 618 columns-to-relations annotations.
Our train set consists of 2.2MM synthetic tables
generated from the DBpedia KG using the method
mentioned in Section 2.1. It consists of 659 rela-
tions in total, including a special "negative" relation
to denote no-or-unknown relations.



Method Pr Re F1
T2K 0.77 0.65 0.70
A2P 0.70 0.84 0.77
Our 0.65 0.78 0.71

Table 1: Performance of different methods on T2Dv2
dataset. Results for T2K (Ritze et al., 2015) and A2P
(Ritze and Bizer, 2017) were copied from the papers.
Note, results for T2K are on an older version of the
dataset called T2D. All the metrics are micro in nature.

Private Dataset This is a test set of internal cat-
alog (IC) tables. This dataset consists of 5 tables,
65 annotated columns, and covers a set of 30 re-
lations, including a special "negative" relation de-
noting no-or-unknown relations. For training set,
we randomly sample a subset of facts belonging
to these 30 relations from our internal knowledge
graph (IKG), and use these to generate a set of
220K synthetic tables with ≈ 5-10 rows per table.

3.2 Experimental Settings
We use pretrained uncased BERT (12-layer, 768-
hidden, 12-heads, 110 MM params), from hugging-
face1 library. We include a dropout layer with a
value of 0.5 before our classification layer and use
the Adam optimizer, with a learning rate of 3e− 5,
β1 = 0.9, β2 = 0.999 and ε = 1e − 8. We use a
batch size of 16 and max sequence length of 256
to train the model. Hyper-parameters, i.e. epochs
(values: [1, 5]) and input sequence length (values:
[128, 256, 512]) for BERT, were tuned on a vali-
dation set. The model takes ≈ 24 and 2.4 hours
to complete 1 epoch on DBpedia and IKG respec-
tively, using 4 Nvidia Tesla V100 GPUs.

3.3 Results
Our performance is better than T2K (Ritze et al.,
2015) in terms of F1 score (see Table 1). We should
mention that T2K is based on entity lookup in DB-
pedia, and therefore, by design can only work on
tables that contain overlapping facts with DBpe-
dia KG. In comparison, our method can work with
tables that do not overlap with the target KG.

Similarly, A2P (Ritze and Bizer, 2017) relies on
building an attribute-to-property dictionary using
T2K, and using it to match columns with prop-
erty labels in the DBpedia KG. Consequently, it
suffers from the same limitations as T2K. But it
also makes a few additional assumptions that are
not valid for all KGs and tables, such as, presence

1https://github.com/huggingface

Dataset Input Pr Re F1

T2Dv2
T 0.65 0.60 0.62
T + C 0.57 0.80 0.67
T + H 0.60 0.73 0.66
T + C + H 0.65 0.78 0.71

IC
T 0.03 0.03 0.03
T + C 0.26 0.88 0.40
T + H 0.17 0.54 0.26
T + C + H 0.33 0.88 0.48

Table 2: Precision, recall and F1 score for our model
after adding metadata. Here, T, C and H stand for Ta-
ble, Context and Headers respectively. All metrics are
micro in nature.

of natural language labels for relations in KG and
column-headers in tables. It also relies on ad-hoc
methods to reduce noise in the attribute-to-property
dictionary, which may not easily generalize to other
KGs, tables and domains. Our method does not
make any of these assumptions; therefore, it can be
generalized to various KGs and tables.

3.4 Ablation Study

To understand the effects of proposed metadata on
model performance, we perform experiments on
both datasets by progressively including different
metadata as model input (see Table 2). We observe
that separate inclusion of context and header leads
to a significant improvement in F1 score over both
datasets. We also observe that combined inclusion
of context and header leads to the best performance.
These results demonstrate the usefulness of pro-
posed synthetic metadata in model performance.

To directly evaluate the quality of retrieved meta-
data, we performed manual analysis on a randomly
sampled set of 100 synthetic tables. We observed
that roughly 30% of retrieved contexts in a table
either, implicitly or explicitly, encode the correct
relation between two columns. We also observed
that roughly 60% of retrieved column-headers were
correct, while the rest were incorrect or blank.

4 Conclusion and Future Work

We propose general techniques to artificially gen-
erate useful metadata, specifically context and
column-headers, for synthetic tables. By design,
our proposed techniques can be applied on syn-
thetic tables generated from any arbitrary KG. Our
experiments on 2 tabular datasets show that such
synthetic metadata leads to significant improve-



ments in RE performance.
In the future, we will explore following 3 re-

search directions: 1) encode tables using pretrained
table encoders for RE; 2) develop new methods to
extract additional metadata for synthetic tables; 3)
use natural language labels for relations in KG as
input for model prediction.

References
Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks,

and Charles Sutton. 2019. Colnet: Embedding the
semantics of web tables for column type prediction.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 29–36.

Vincenzo Cutrona, Federico Bianchi, Ernesto Jiménez-
Ruiz, and Matteo Palmonari. 2020. Tough tables:
Carefully evaluating entity linking for tabular data.
In International Semantic Web Conference, pages
328–343. Springer.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu,
and Cong Yu. 2020. Turl: Table understanding
through representation learning. arXiv preprint
arXiv:2006.14806.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. pages 4171–4186.

Ernesto Jiménez-Ruiz, Oktie Hassanzadeh, Vasilis
Efthymiou, Jiaoyan Chen, and Kavitha Srinivas.
2020. Semtab 2019: Resources to benchmark tabu-
lar data to knowledge graph matching systems. In
European Semantic Web Conference, pages 514–
530. Springer.

Oliver Lehmberg, Dominique Ritze, Robert Meusel,
and Christian Bizer. 2016. A large public corpus of
web tables containing time and context metadata. In
WWW (Companion Volume), pages 75–76. ACM.

Dominique Ritze and Christian Bizer. 2017. Matching
web tables to dbpedia-a feature utility study. context,
42(41):19–31.

Dominique Ritze, Oliver Lehmberg, and Christian
Bizer. 2015. Matching html tables to dbpedia. In
Proceedings of the 5th International Conference on
Web Intelligence, Mining and Semantics, pages 1–6.

Daheng Wang, Prashant Shiralkar, Colin Lockard,
Binxuan Huang, Xin Luna Dong, and Meng
Jiang. 2021. Tcn: Table convolutional net-
work for web table interpretation. arXiv preprint
arXiv:2102.09460.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. Tabert: Pretraining for joint
understanding of textual and tabular data. arXiv
preprint arXiv:2005.08314.

Shuo Zhang and Krisztian Balog. 2020. Web table
extraction, retrieval, and augmentation: A survey.
ACM Transactions on Intelligent Systems and Tech-
nology (TIST), 11(2):1–35.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://dblp.uni-trier.de/db/conf/www/www2016c.html#LehmbergRMB16
http://dblp.uni-trier.de/db/conf/www/www2016c.html#LehmbergRMB16

