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Abstract

End-to-end neural data-to-text (D2T) gener-
ation has recently emerged as an alternative
to pipeline-based architectures. However, it
has faced challenges in generalizing to new do-
mains and generating semantically consistent
text. In this work, we present DATATUNER,
a neural, end-to-end data-to-text generation
system that makes minimal assumptions about
the data representation and the target domain.
We take a two-stage generation-reranking
approach, combining a fine-tuned language
model with a semantic fidelity classifier. Each
of our components is learnt end-to-end without
the need for dataset-specific heuristics, entity
delexicalization, or post-processing. We show
that DATATUNER achieves state of the art
results on the automated metrics across four
major D2T datasets (LDC2017T10, WebNLG,
ViGGO, and Cleaned E2E), with a fluency
assessed by human annotators nearing or
exceeding the human-written reference texts.
We further demonstrate that the model-based
semantic fidelity scorer in DATATUNER is a
better assessment tool compared to traditional,
heuristic-based measures. Our generated text
has a significantly better semantic fidelity than
the state of the art across all four datasets.

1 Introduction

Data-to-Text generation (D2T) is defined as auto-
matically generating natural language texts from
non-linguistic inputs (Reiter and Dale, 2000). In-
terest in this task has been driven by its applicability
to specialized domains. For instance, D2T has been
applied generating weather reports (Liang et al.,
2009), restaurant descriptions (Novikova et al.,
2017b), and video game dialogues (Juraska et al.,
2019). Recently, researchers have investigated
D2T with more diverse domains to arrive at more
generalizable text generation (such as works
on the LDC2017T10 (Knight et al., 2017) and
WebNLG (Gardent et al., 2017) datasets).

∗Work done while at Amazon; currently affiliated with
Google

Traditional approaches to D2T follow a pipeline-
based methodology, dividing the problem into
several sub-problems (Reiter and Dale, 2000;
Gatt and Krahmer, 2018). These include content
selection (which information to include in the text),
text structuring (the order in which to present the
data), sentence aggregation (which information
goes in individual sentences), lexicalization
(finding the right words and phrases to express the
data), referring expression generation (selecting the
words and phrases to identify domain objects), and
linguistic realization (combining all the generated
words and phrases into well-formed sentences).

In recent years, there has been growing interest
in going beyond pipeline-based approaches towards
end-to-end (E-to-E) methods driven by recent
advancements in deep learning (Lebret et al., 2016;
Novikova et al., 2017b; Castro Ferreira et al., 2019;
Dušek et al., 2020). Such methods can be trained
with (data,text) tuples that can be efficiently col-
lected at scale. In contrast, in pipeline approaches,
each step requires its own setup and training data,
such as semantic alignments between sections of the
text and components of the meaning representation.
This makes them more costly and complex to
develop and more prone to error propagation.

To date, end-to-end D2T has faced two main chal-
lenges: (1) generalization to unseen domains and
(2) maintaining semantic fidelity to accurately con-
vey the source data. In a recent comparative study,
Castro Ferreira et al. (2019) found that, compared to
the best pipeline-based system, E-to-E approaches
based on GRU and Transformer architectures
scored more than 35 BLEU points lower on unseen
domains from the WebNLG dataset. Moreover,
E-to-E systems scored worst for semantic accuracy.

To address these challenges, we introduce
DATATUNER, an E-to-E, domain-independent
D2T system that makes no assumptions about the
generated text or meaning representation. At its
core, DATATUNER leverages a pretrained language
model with fine-grained state embeddings to
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achieve strong generalization. It also employs a
weakly-supervised Semantic Fidelity Classifier
(SFC) to detect and avoid generation errors (such
as hallucination, omission, repetition, and value
errors). We further repurpose this classifier to
assess the outputs of any D2T system, overcoming
the limitations of existing heuristic-heavy methods
for detecting semantic errors.

In this work, we deliver three main contributions
across four major D2T datasets from various
domains and meaning representations:
• We show that DATATUNER pushes the state

of the art on automated metrics by significant
margins, ranging from 1.2 to 5.9 BLEU points,
compared to the best existing pipeline-based and
E-to-E techniques.
• With a crowdsourcing experiment on Ama-

zon Mechanical Turk, we demonstrate that
DATATUNER generates text with significantly
better fluency than existing works. On two
datasets, our texts are even judged to be better,
on-average, than the human references.
• We show that our model-based semantic accuracy

metric is 4.2% to 14.2% more accurate in
detecting semantic errors than existing heuristic-
based approaches. As a result, DATATUNER

significantly improves the semantic accuracy of
generated text as assessed by manual annotation.

2 Related Work

Pipeline vs. End-to-End Approaches: Within
the pipeline-based paradigm, several studies have
illustrated that breaking the D2T problem into sub-
problems improves overall performance. Moryossef
et al. (2019b) showed that separating planning from
realization helps achieve better semantic faithful-
ness compared to an E-to-E neural approach on
the WebNLG dataset. Castro Ferreira et al. (2019)
conducted a comparative study across a variety of E-
to-E and pipeline approaches with WebNLG. They
concluded that the latter are significantly better at
generalizing to unseen domains. However, so far,
the E-to-E approaches in these studies have been
trained from scratch on the task dataset. Our work
investigates whether using a pretrained model with
strong language understanding and generation ca-
pabilities raises the performance of E-to-E models.

Structured Representations of the Data
Another thread of research focuses on developing
better encoders for meaning representation lan-
guages, exploiting their structural properties. This is

particularly relevant to AMR (Damonte and Cohen,
2019; Ribeiro et al., 2019; Zhu et al., 2019; Guo
et al., 2019). Damonte and Cohen (2019) showed
that replacing sequential encoders with a graph en-
coder improves text quality as measured by BLEU
and METEOR scores. Zhu et al. (2019) proposed
using self-attention to better model the relations be-
tween indirectly connected AMR components. Our
work differs in that it does not require any explicit
assumption about the structure of the meaning rep-
resentation or the relations between its components.

Semantic Fidelity Guarantees To improve
semantic fidelity (how accurately the generated text
conveys the meaning) in E-to-E architectures, one
approach has been to train reverse “Text-to-Data”
models (Chisholm et al., 2017; Agarwal et al., 2018).
We take a different approach in this work as we are
focused on semantically verifying the generated
outputs. We aim to build a semantic fidelity
model that can generalize better by not having to
learn to convert unseen values or entities to their
corresponding representation in the data. Another
approach has been to rely on heuristics that map
data values to potential realizations in the text, thus
computing a Slot Error Rate (SER) metric (Dušek
et al., 2019; Juraska et al., 2019; Moryossef et al.,
2019a). For instance, Dušek et al. (2019) use SER
for reranking beam elements during decoding from
an attention-based sequence-to-sequence model on
the Cleaned E2E dataset. Juraska et al. (2019) used
it similarly with a transformer model on the ViGGO
dataset. This technique, despite aiming for more
transparency, is difficult to scale to wider domains.
Moreover, for meaning representations which are
not dominated by named entities, designing the
rules to ensure consistency becomes more difficult.

3 Problem Description

To illustrate our approach to the D2T task and moti-
vate the architecture choices, we start by formalizing
the task and describing the datasets used in our study.

3.1 Data-to-Text Task
The D2T task is defined as generating text T from
dataD that is encoded via a meaning representation
MR. We assume that content selection is done prior
to the D2T task, an assumption also made in the
datasets we use. Therefore, the text T should have
semantic fidelity by conveying all the input data,
and only the input data.



3.2 Datasets
We selected the major datasets that satisfy the
task definition above. Each dataset consists of
(D,T ) pairs. The following briefly describes
each dataset with examples of how the data is
preprocessed/linearized ready to be fed into the
models. Note that we rely on adding special tokens
(highlighted in bold below) during preprocessing
to better guide our models.

3.2.1 WebNLG
For WebNLG data, D is a set of 1 to 7 DBPedia
triples and T is an English text verbalizing these
(Gardent et al., 2017). The test data spans 15
different domains, 10 of which appear in the
training data. For data linearization, we concatenate
the triples, adding special tokens for ‘subject’,
‘predicate’, and ‘object’ indicators. We convert
camel- and snake-case strings to sentence-case. For
fair comparison with the state of the art, we use v1.4
from Castro Ferreira et al. (2018).

Example 3.1
D= Subject: Aarhus | Predicate: leaderName |

Object: Jacob Bundsgaard
Linearized D= <subject> Aarhus <predicate>
leader name <object> Jacob Bundsgaard
T= The leader of Aarhus is Jacob Bundsgaard.

3.2.2 LDC2017T10
In the LDC2017T10 dataset (Knight et al., 2017),
D is an Abstract Meaning Representation (AMR)
graph representing “who is doing what to whom”
for each sentence in T . The texts include broad-
cast conversations, newswire and weblogs. We
linearized using the preprocessing script by Ribeiro
et al. (2019), without lowercasing. We merged
multiple leaves that correspond to one entity (e.g.,
“United States” below) and replaced each role
specifier (words starting with a colon, such as
“:name”) with a special token.

Example 3.2
D= (r / respond−01

:ARG0 (c / country :wiki ‘‘United States’’
:name (n / name :op1 ‘‘United”
:op2 ‘‘States’’))

:ARG1 (d / develop−01
:mod (t / that))

:ARG2 (c2 / condemn−01
:manner (s / swift)))

Linearized D= (respond <:ARG0>
(country <:name> (United States))
<:ARG1> (develop <:mod> (that))
<:ARG2> (condemn <:manner> (swift)))

T= The United States responded to that
development with swift condemnation.

3.2.3 Cleaned E2E
The Cleaned E2E dataset recently introduced
in (Dušek et al., 2019) is an automatically cleaned
version of the original E2E dataset (Novikova
et al., 2017b), aiming to eliminate omissions and
hallucinations in the human text by fixing the corre-
sponding MR. Each MR consists of 3 to 8 slot-value
pairs in the restaurant domain. We preprocessedD
by adding special tokens before each slot type.

Example 3.3
D= name[Zizzi], eatType[coffee shop],

area[riverside]
Linearized D= <name> name=[Zizzi];

<eatType> eatType=[coffee shop];
<area> area=[riverside]

T= You can find a coffee shop named Zizzi in
the riverside area.

3.2.4 ViGGO
In the ViGGO dataset (Juraska et al., 2019),D is a
meaning representation with one of 9 dialogue acts
(e.g. give opinion, confirm, suggest, etc.) and 1 to
8 slot-value pairs from 14 different video game at-
tributes (e.g. NAME, GENRES, etc.). Each T is an
utterance representing a dialogue turn in the video
games domain. In preprocessing, we add special
tokens at the beginning and end, representing the
dialog act, and special tokens before each slot type.

Example 3.4
D= request(

developer[EA Canada], specifier[favorite])
Linearized D= <request> request
(<developer> developer: [EA Canada],
<specifier> specifier: [favorite] <request>)
T= What’s your favorite game that EA Canada has made?

3.3 Datasets Discussion
The datasets vary widely. LDC2017T10 dataset is
not bounded to specific domains. Hence, although
the AMR format closely describes the text, it is non-
trivial to generalize from the training to test data.
WebNLG covers a wide, but restricted set of do-
mains, only a subset of which are present in the train-
ing data. However it has high lexical diversity. The
number of unique words in the test set of WebNLG
is 7253 (63% of them capitalized), compared to
5533 (21.6% capitalized) for LDC2017T10, 2014
(33% capitalized) for ViGGO, and 1966 (29% cap-
italized) for Cleaned E2E. Measured with the New
DaleChall readability score (Dale and Chall, 1948),
LDC2017T10 had the highest difficulty score (6.49)
compared to 1.03, 0.85, and 1.02 for the WebNLG,
Cleaned E2E, and ViGGO datasets respectively. In
terms of quality, ViGGO has been designed with



the goal of perfect semantic fidelity, and Cleaned
E2E was heavily filtered from the original dataset to
achieve that. On the other hand, the other datasets’
versions we use have not undergone such filtering.

4 DATATUNER Architecture

Given the diverse meaning representations we
tackle, we designed DATATUNER to be highly
generic, allowing D2T generators to be built for new
datasets with minimal work beyond data prepro-
cessing. At a high-level, our text generation system
takes a 2-stage approach through generation and
reranking. First, we fine-tune a pretrained language
model on the D2T task using the task’s training
data. Next, we build a specialized semantic fidelity
classifier trained on an automatically-generated,
task-specific corpus. Using these models, we
construct a customized beam-search decoder that
ranks candidates based on the probabilities from
the language model, and, at its final stage, reranks
them based on the classifier’s labels.

4.1 Data-to-Text Model Fine-tuning
The first component in DATATUNER is the
fine-tuned Data-to-Text Language Model (D2T-
LM). We build on the pretrained OpenAI GPT-2
model (Radford et al., 2019), a multi-layer,
autoregressive language model. Each layer is a
transformer decoder block (Vaswani et al., 2017)
of masked multi-headed attention and a fully
connected layer. We provide a full diagram of the
model operation in Figure 2 of the Appendix.

Inputs: To create the input, we concatenate
the data D and the text T into a single sequence
(<data>{D}<text>{T}). The tokens <data>
and<text> are special tokens appended to GPT-2’s
original vocabulary; their embeddings are learnt
during fine-tuning. In addition, we append to
the vocabulary the task-dependent special tokens
described above.After tokenization, we get a
sequence of subword tokens, which are encoded
to point to vocabulary indices:

S=(<data>,d1,...dk,<text>,t1,...tm)

=(s0,...sn)
GPT-2 additionally expects positional encodings
that help it capture the input tokens’ order. We also
add a third type of input: state embeddings. These
are analogous to the “Segment Embeddings”, intro-
duced in BERT (Devlin et al., 2019) to distinguish
between sentence pairs in the next sentence predic-
tion task. They have also been used by Wolf et al.

(2019b) to differentiate between different speakers’
utterances in dialogue. We apply these state embed-
dings at a more fine-grained level to give the model a
hint on the type of the data being handled. The state
vector for S is a vector of tokens with size |S|, with
each token ID indicating the type of si. We use a
simple rule for all datasets: the state token ID of any
token si is the ID of the last special token preceding
it (i.e. in the range (s0...si) inclusively). One inter-
esting feature of GPT-2 is its use of Byte-Pair Encod-
ing (BPE) (Sennrich et al., 2016) on bytes instead of
unicode characters. Hence, with a modestly-sized
subword vocabulary of around 50K, it can encode
any input text and score any output sequence, with-
out suffering from unknown tokens. This is benefi-
cial for our task where named entities are common.

Training: The input embeddings, positional em-
beddings, and state embeddings are added together
and fed to the first GPT-2 layer. The last GPT-2 layer
output is then normalized using “LayerNorm” (Ba
et al., 2016) before passing it to a linear layer added
on top. The weights of the latter are tied to the input
embeddings. Finally, a softmax is applied to the out-
put of the linear layer to generate probability distri-
butions of the output tokens. Our training objective
is a language modeling one where we aim to find the
set of weights θ that minimize the cross-entropy loss

`=

|S|∑
i=|D|+2

logPθ(si|s0,...si−1) (1)

Note that, since our task is to generate text given
the data, we mask the data component in the loss
above, and sum the loss from index |D|+2 (i.e.,
after the <text> token). We use AdamW as an
optimizer (Loshchilov and Hutter, 2019).

4.2 Semantic Fidelity Classifier
The second component of DATATUNER is the
Semantic Fidelity Classifier (SFC). A text is deemed
to possess semantic fidelity if it accurately conveys
all parts of the input data without omitting any nor
adding additional data. This component provides
an additional assessment of how accurately the
generated text reflects the input data. Our approach
draws parallels between this task and natural
language inference (NLI) tasks, where the goal is
to determine whether a “hypothesis” is true, false,
or undetermined given a “premise”. Similarly, in
semantic fidelity classification, we aim to determine
if the text is “accurate” or contains some “omission”,
“repetition”, “hallucination”, or “value errors”. We
build on the success seen by pretrained models such



as BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) for NLI, and cast the problem as a
sentence-pair classification task for the (Data, Text)
pairs, using RoBERTa as a base encoder.

Training Data Generation: The classifier’s
training data should consist of semantically faithful
and semantically incorrect examples. When eval-
uating consistency in abstractive summarization,
weakly supervised models trained on domain-
specific data have been shown to outperform
supervised models trained on out-of-domain,
human-annotated data (Kryściński et al., 2019).
Motivated by that, we generate the training data
for the SFC automatically from training data for
the main D2T task. We define a set of simple,
dataset-independent transformations that account
for common errors in data-to-text generation. For
each tuple (Di,Ti) in the training data, we split the
text Ti into sentences, using the Spacy sentence
tokenizer (Honnibal and Montani, 2017). Then we
generate the following variations:
• Accurate: This is the text Ti.
• Omission: generated by removing the shortest

sentence in Ti (to help detect subtle omissions).
• Repetition: generated by taking a random

sentence in the text Ti and inserting it before a
random other sentence in Ti.
• Hallucination: generated by selecting a random

sentence from another training text Tj 6=i and
inserting it before a random sentence in Ti.
• Value Errors: generated by selecting a random

value x that occurs verbatim in both Di and
Ti. We replace x in Ti with a random other
value from Di. For slot-based MR (Cleaned
E2E and ViGGO), x is selected from the slots’
values. For graph-based MR (LDC2017T10),
x is selected from the graph’s leaves. For RDF
triples (WebNLG dataset), x is chosen from the
triples’ subjects and objects.
For each tuple (Di,Ti) from the original dataset,

we get a set of new tuples for the SFC, consisting
of (Di, Tj , l) for each error label l above and
(Di,Ti,“accurate”) for the accurate label.

Model Input: As shown in Figure 1, we concate-
nate the data and text tokens, adding the special start
(<s>) and end (</s>) tokens used during the train-
ing of RoBERTa. In addition to subword token em-
beddings, we add positional embeddings (represent-
ing the position in the input) and segment embed-
dings (representing the data type vs. the text type).

Training: The 3 embeddings are summed

RoBERTa

<s> Output Hidden Layers

Feedforward Network

Data Text

Segment Embeddings

Token Embeddings

Positional Embeddings
+

+

<s> </s></s> </s>d1, …, dk t1, …, tm

Fidelity Label

Figure 1: Semantic fidelity classifier setup

element-wise to produce the input representation
passed to RoBERTa’s first encoder layer. Each layer
subsequently applies a self-attention followed with
a feed-forward network. Similar to the handling
of classification problems in BERT and RoBERTa,
we take the output hidden layer corresponding to
the very first token (<s>) and pass that through an
additional single-layer neural network. The model
is trained as a multi-class classifier (5 labels), with
a cross-entropy loss as the objective and AdamW
as the optimizer.

4.3 Decoder
Our decoding algorithm for the D2T-LM is based
on beam-search. At each decoding step, items
are ranked according to the score R below, which
multiplies the conditional probabilities’ product
with a length normalization factor. Low-scoring
candidates are dropped once the number of
candidates exceeds the beam size.

R=
1

(i−(|D|+2))α

i∏
|D|+2

P (si|s0...si−1)

Compared to traditional beam search, we do
not aggregate probabilities from the start of the
sequence, but from the start of the text component
(index |D|+2). Moreover, the length normalization
is adjusted to only account for the text compo-
nent.We do this because we fine-tuned the D2T-LM
on generating text given data as a context, and not
on generating the data itself. Hence, we remove
the data tokens from the beam-scoring function to
prevent the decoder from favoring longer sequences.
In our experiment, we use a value of α=0.75. At
the end of the beam-search, we use the SFC to
rerank the complete candidates (terminated with



an end-of-sequence token) in the beam. For the
reranking metric, we use the following binary score:

1SFC(Di,Ti)=“accurate′′

Hence, we push the text Ti to the top of the beam if
our SFC labels the (Di,Ti) tuple as “accurate”. We
resolve ties using the original D2T-LM scores. An
alternative strategy would have been to apply the
reranking at each decoding stage, but we empirically
found that strategy to have negligible gains in terms
of the “accurate” beam outputs while requiring a
cost that grows with the text size. In addition to
helping surface semantically accurate outputs, the
SFC labels can be used to assess whether the gen-
erated text is usable in practice. In our experiments,
we compare this model-based approach to the
current heuristic-heavy approach commonly used.

5 Experiments

For each dataset, we generate the outputs from three
versions of DATATUNER. DATATUNER NO FC/FS

simply relies on the D2T-LM, with no SFC-based
reranking and a coarse-grained version of the
state embeddings that contains only <data> and
<text> tokens (as done by Wolf et al. (2019b)).
DATATUNER NO FC adds the fine-grained
state embeddings described in Section 4.1 to
DATATUNER NO FC/FS. The third variant,
DATATUNER FC, additionally includes the SFC-
based reranking. For the SFC, we generate the
synthetic dataset and train the model using the
RoBERTa-large model (355M parameters) on
lower-cased text. On the synthetic test set, the
weakly-supervised classifier has a macro-averaged
F1-score (across 5 classes) of 97%, 97%, 98%, and
98% for the LDC2017T10, WebNLG, Cleaned
E2E, and ViGGO datasets respectively.We use
the models bundled within the HuggingFace
Transformers library (Wolf et al., 2019a). For the
D2T-LM, we select the GPT-2-Medium model
(with 345M-parameters) as the base model and set
the beam search width during decoding to 5. All our
experiments were performed on a single machine
with Nvidia Tesla v100 16GB GPUs.

We evaluate each variant’s outputs with auto-
mated metrics, crowdsourced fluency evaluation,
and expert-annotated semantic assessment. We
also quantify the efficacy of our semantic fidelity
classifier. We compare against the state of the art
systems on each dataset, selected based on BLEU
scores. In the supplementary material, we include
the outputs from our system variants as well as the

D Model B M R C

L
D

C
20

17
T

10

DATATUNER FC 37.7 38.9 65.1 3.9
DATATUNER NO FC 37.2 38.4 65.0 3.9
DATATUNER NO FC/FS 35.6 37.3 64.4 3.8
Zhu et al. (2019) 31.8 36.4 - -
Guo et al. (2019) 30.4 - - -
Ribeiro et al. (2019) 27.9 33.2 - -

W
eb

N
L

G

DATATUNER FC 52.4 42.4 66.0 3.7
DATATUNER NO FC 52.9 41.9 65.9 3.7
DATATUNER NO FC/FS 51.6 40.6 64.9 3.6
Castro Ferreira et al. (2019) Pipe. 51.7 32.0 - -
Castro Ferreira et al. (2019) E2E 33.5 25.0 - -
Moryossef et al. (2019b) Pipe. 47.4 39.1 63.1 2.7

C
le

an
ed

E
2E

DATATUNER FC 43.6 39.0 57.5 2.0
DATATUNER NO FC 43.6 39.0 57.5 2.0
DATATUNER NO FC/FS 43.3 38.9 57.6 2.0
Dušek et al. (2019) (TGen+) 40.5 37.6 56.0 1.8

V
iG

G
O

DATATUNER FC 53.6 39.4 64.0 2.7
DATATUNER NO FC 53.4 39.1 63.8 2.7
DATATUNER NO FC/FS 51.4 38.9 62.7 2.5
Juraska et al. (2019) 52.1 39.1 63.8 2.5

Table 1: Evaluation of the different systems based on
automated metrics.

main training hyperparameters.

5.1 Automated Evaluation
For each test set, we compute BLEU (B) (Papineni
et al., 2002), which measures the n-gram precision,
METEOR (M) (Lavie and Agarwal, 2007), which
is based on the harmonic mean of the unigram
precision and recall while accounting for stem and
synonymy matching, ROUGEL (R) (Lin, 2004),
which calculates the recall for the longest common
subsequence, and CIDer (C) (Vedantam et al.,
2015), which is based on the TF-IDF scoring of the
n-grams. We used the official evaluation scripts of
the E2E challenge. 1. Table 1 compares the results
generated by DATATUNER variants against the state
of the art on each dataset.

Improvements from the D2T-LM alone: An-
alyzing the simple DATATUNER NO FC/FS model
compared to the state of the art on each dataset, we
find that it already improves the BLEU score across
2 datasets and the METEOR score across 3 datasets.
This indicates that the D2T-LM component of
DATATUNER is itself contributing to achieving an
end-to-end state of the art system without needing
any delexicalization or MR-specific encoding.

Fine-grained state embeddings matter: We
notice a consistent trend across the 4 datasets:
adding fine-grained state embeddings boosts the
classifier’s performance on these metrics, for

1https://github.com/tuetschek/
e2e-metrics

https://drive.google.com/file/d/1YJP_zAfe2Ds736PdA5ML6xv8YWLE4wse/view?usp=sharing
https://github.com/tuetschek/e2e-metrics
https://github.com/tuetschek/e2e-metrics


instance, from 0.3 (on Cleaned E2E) to 2.0 BLEU
points (on ViGGO).

SFC effect on automated metrics: Several
studies highlighted the shortcomings of automated
metrics in evaluating semantic adequacy (Novikova
et al., 2017a; Shimorina, 2018). Along these lines,
compared to our DATATUNER NO FC model, we
observe slight additional boosts from introducing
the SFC classifier with the DATATUNER FC variant.
Interestingly, DATATUNER FC always has the
highest METEOR score, which was the only metric
found by Shimorina (2018) to be correlated with
semantic adequacy.

Largest boost on the most complex text:
DATATUNER had the widest improvement of 5.9
additional BLEU points on the LDC2017T10
dataset. This is interesting, given that (1) the text in
LDC2017T10 is typically long with more complex
sentence structures (cf. Section 3.3) and that (2) the
baseline systems targeting AMR-to-text (Zhu et al.,
2019; Guo et al., 2019; Ribeiro et al., 2019) built
more sophisticated architectures compared to other
datasets (e.g.,ViGGO and Cleaned E2E). This illus-
trates our system’s ability to work across a spectrum
of data representations and text complexity.

6 Human Evaluation of Fluency

We conduct human evaluation of fluency, also
known as naturalness or readability for 150
examples sampled at random from each dataset. We
sourced the state of the art systems’ outputs either
from the paper’s repository (WebNLG) or directly
from the authors (LDC2017T10, ViGGO, Cleaned
E2E). For fluency, we use Amazon’s Mechanical
Turk to ask crowd workers to indicate how fluent a
text is on a 7-point Likert scale using sliders, where
“high fluency” is defined as “grammatical, natural,
and could have been produced by a skilled native
speaker”. Following findings from (Novikova et al.,
2018; Van Der Lee et al., 2019) for acquiring more
consistent human ratings, texts from different sys-
tems generated for the same meaning representation
are presented in every task for annotators to score
them relative to each other. We also include the
human-written text, and randomize the texts’ order.
For a fair comparison, we lower-case our generated
texts for the LDC2017T10 dataset to match the
outputs of Zhu et al. (2019). We also detokenize
outputs from that work to avoid these biasing the
workers. We choose experienced annotators (com-
pleted>500 tasks) with high previous performance

D Model F DSA QD HSA QH

L
D

C
20

17
T

10 DATATUNER FC 4.79s,h 81.8s,h

90.8

−

-
DATATUNER NO FC 4.87s 70.5s,h −
DATATUNER NO FC/FS 4.78s,h 65.8s,h −
Zhu et al. (2019) 3.97h 62.4h −
Human 5.05 93.1 −

W
eb

N
L

G

DATATUNER FC 5.23s 91.7s,h

87.5

58.1s,h

73.3
DATATUNER NO FC 5.20s 81.4s,h 54.1s,h

DATATUNER NO FC/FS 5.27s 73.6s,h 43.6s,h

Castro Ferreira et al. (2019) 4.54h 50.5h 33.7h

Human 5.21 94.7 41.2

C
le

an
ed

E
2E

DATATUNER FC 5.46s,h 99.3s,h

89.2

97.3s,h

75.0
DATATUNER NO FC 5.46s,h 99.0h 97.1s,h

DATATUNER NO FC/FS 5.45s,h 98.9h 97.1s,h

Dušek et al. (2019) TGen+ 5.23h 98.9h 98.0h

Human 4.42 99.9 100.0

V
iG

G
O

DATATUNER FC 5.77s,h 97.2s

92.5

74.5s,h

88.3
DATATUNER NO FC 5.76s,h 92.8h 82.3s,h

DATATUNER NO FC/FS 5.60h 91.7h 82.5s,h

Juraska et al. (2019) 5.58h 92.8h 90.9
Human 5.34 97.1 91.9

Table 2: Human evaluation of the fluency (F ),
DATATUNER Semantic Accuracy (DSA), Heuristic
Semantic Accuracy (HSA), and quality measures QD

and QH for DSA and HSA. The superscripts s and h
imply a statistically significant difference compared to
the state of the art and the human baseline respectively.)

(>97% of previous tasks accepted) from the USA.
Improvement on the state of the art: As shown

in Table 2, compared to the human baseline, our
DATATUNER FC model improves the fluency on all
four datasets compared to the state of the art systems
with statistically significant margins (p < 0.05).
For computing significance measures, we use the
pairwise Wilcoxon signed-rank test (Wilcoxon,
1992) with the null hypothesis that the fluency
values for each pair of systems come from the
same distribution. For LDC2017T10, where
DATATUNER FC had the largest gap in BLEU score
(+5.9), we observe the widest fluency improvement
(+0.82) compared to Zhu et al. (2019). Interestingly,
despite the fact that DATATUNER FC scored 0.7
higher on BLEU compared to the pipeline approach
in (Castro Ferreira et al., 2019) for WebNLG, the
difference in fluency is 0.69. We conjecture that this
originates from two main sources. First, semantic
errors in the outputs might be perceived by annota-
tors as breaking the sentence fluency. For example,
one text contained the phrase “has a runway length
of Shehbaz Sharif ”. Second, the pipeline approach
had a sizeable portion of non-realized outputs
(e.g. “PATIENT-1 is made with PATIENT-1 and
PATIENT-2.”), which were annotated as non-fluent.
On the closed-domain datasets (ViGGO and
Cleaned E2E), we notice that the fluency margins
shrink while still being statistically significant. This
is expected as these datasets have a narrow set of



sentence formulations that are easier to learn.
Improvement on the human baseline: Surpris-

ingly, we find that DATATUNER FC has received a
higher overall average fluency score on 3 out of the
4 datasets compared to the human baseline. This
difference is statistically significant in both Cleaned
E2E and ViGGO, with the largest difference being
1.04 points for the Cleaned E2E. Investigating, we
found several low-scored texts had an informal
style and problems in sentence construction. One
example contained “It serves Chinese food for less.”
One explanation could be that, once fine-tuned
on a large enough dataset, our models have less
tendency to deviate from common formulations
that are favored by annotators.

7 Human Evaluation of Semantic Fidelity

For assessing semantic accuracy, we compare two
approaches. The first uses heuristics to label each
data-text tuple as accurate (AH ) or erroneous (EH ).
For this, we use the heuristics by Shimorina and Gar-
dent (2018) for WebNLG, by Juraska et al. (2018)
for ViGGO, and by Dušek et al. (2019) for Cleaned
E2E. We are not aware of heuristic-based scripts for
LDC2017T10. Then we compute Heuristic Seman-
tic Accuracy (HSA) of a dataset as the fraction with
the label AH . The second approach uses the SFC
component in DATATUNER to assign accurate (AD)
or erroneous (ED) labels for each data-text tuple.
We compute DATATUNER Semantic Accuracy
(DSA) as the fraction with the labelAD. Both met-
rics are computed per system across each dataset.

To compare the quality of HSA and DSA as
measures of semantic accuracy, we manually an-
notated a sample of the data-text tuples. Since
the vast majority of the text is expected to be
accurate, especially on the cleaner datasets, we
designed a sampling methodology to give a bal-
anced representation of semantically accurate and
inaccurate texts. To start, we sample 4 in-
dices from the target dataset such that the hu-
man baseline outputs for these indices are labeled
as: {(AH ,ED),(EH ,AD),(EH ,ED),(AH ,AD)}.
We do the same with the state of art system and
DATATUNER FC outputs. We continue in a round-
robin fashion until we get 24 indices per dataset. In
the case of the LDC2017T10 dataset, we sample 24
indices in a similar fashion while ignoring theAH
and EH labels. Next, two of the authors were pre-
sented with the input meaning representation and
the output text generated by each system, for the

24 sampled dataset entries. The texts were shown
in randomized order, similar to the Mturk study.
The authors manually labeled each data-text tuple
as accurate (AM ) or erroneous (EM ). The inter-
annotator agreement measured with Cohen’s Kappa
was 0.81, indicating near-perfect agreement. We
use these labels to assess the quality QD of the DSA
metric as the percentage of cases where the manual
labelAM matchesAD. Similarly, we evaluate the
quality QH of the HSA metric as the percentage of
cases whereAM matchesAH . These percentages
are aggregated across systems, obtaining 120 sam-
ples per dataset. We present these metrics in Table 2.

DSA provides higher quality semantic anno-
tations: We notice first that QD is 4.2% higher on
ViGGO and 14.2% higher on both Cleaned E2E and
WebNLG, compared to QH . These differences are
statistically significant (p<0.05) on WebNLG and
Cleaned E2E as measured by McNemar’s test (Mc-
Nemar, 1947), where the null hypothesis is that the
marginal probability for each outcome (accurate
or erroneous) is the same for both algorithms. This
provides more confidence in the ranking given by
the DSA metric in Table 2 over the HSA one.

HSA struggles with open domains: The
heuristic-based approach labeled only 41.2% of
the human references in WebNLG as accurate,
16.9% lower than the score it assigned to our
DATATUNER FC. Since the latter was trained on
human references, this difference is more likely to
stem from the shortcoming of the heuristic-based
approach in assessing the semantics. Checking
the data, we observed that humans tend to create
more diverse formulations, such as converting
United Kingdom to UK, which are easy to miss with
heuristics. On the contrary, our DSA metric scored
the human references higher.

DATATUNER FC delivers higher semantic
accuracy: We also notice that, across all datasets,
DATATUNER FC significantly improves over
the state of the art models as measured by the
DSA metric (McNemar’s (McNemar, 1947) gives
p < 0.05). Compared to other DATATUNER

variants, DATATUNER FC also adds between 0.3%
and 11.3% improvements, thus corroborating the
utility of the semantic fidelity classifier.

8 Conclusion

In this work, we presented DATATUNER, an
end-to-end data-to-text generation system equipped
with an end-to-end semantic fidelity classifier.
DATATUNER records new state of the art results on



four different datasets, with significant margins on
automated metrics. We also show that our system
has a clear fluency advantage over all the previous
state of the art models. We further illustrate that
DATATUNER provides strong accuracy on the task
of delivering semantically consistent outputs.
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Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with ap-
plication to the biography domain. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1203–1213, Austin,
Texas. Association for Computational Linguistics.

Percy Liang, Michael Jordan, and Dan Klein. 2009.
Learning semantic correspondences with less su-
pervision. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language
Processing of the AFNLP, pages 91–99, Suntec, Sin-
gapore. Association for Computational Linguistics.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International
Conference on Learning Representations.

Quinn McNemar. 1947. Note on the sampling error
of the difference between correlated proportions or
percentages. Psychometrika, 12(2):153–157.

Amit Moryossef, Ido Dagan, and Yoav Goldberg. 2019a.
Improving quality and efficiency in plan-based neu-
ral data-to-text generation. In Proceedings of the
12th International Conference on Natural Language
Generation.

Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019b.
Step-by-step: Separating planning from realization
in neural data-to-text generation. In Proceedings of
the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2267–2277, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Jekaterina Novikova, Ondřej Dušek, Amanda Cer-
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Appendix A:
Model Diagram and Parameters

Figure 2 shows the full diagram of the D2T-LM
model presented in Section 4.

In Table 3, we present examples of the outputs
generated by DATATUNER and the state of the art
models, alongside the human references.



D Model Examples

C
le
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2E

Human pub in riverside that also serves Italian food: The Vaults has got
high prices, is not child-friendly and has an average rating. It is
near Rainbow Vegetarian Caf in riverside.

DATATUNER FC The Vaults is an Italian pub in the riverside area near Rainbow
Vegetarian Caf. It has an average customer rating and a high price
range. It is not child friendly.

Dušek et al. (2019) The Vaults is an italian pub with an average customer rating. It is
located in the riverside area near Rainbow Vegetarian Caf. It is not
children friendly and has a high price range.
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Human Adirondack regional airport serves both Lake Placid and Saranac
Lake, New York. The length of the runway at Asirondack regional
airport is 2003.

DATATUNER FC Adirondack Regional Airport serves the cities of Lake Placid and
Saranac Lake, New York and has a runway length of 2003.0.

Castro Ferreira et al. (2019) Adirondack Regional Airport serves the city of Lake Placid and
Saranac Lake, New York and has a runway length of Shehbaz Sharif.
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10 Human the plan requires 8 precautionary steps before the order to shoot
down a plane may be issued.

DATATUNER FC the plan requires eight precautionary steps before the order to shoot
down the plane can be issued.

Zhu et al. (2019) the plan required 8 precaution steps before it can be issued to order
shot down.
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G
O

Human Guitar Hero: Smash Hits was a very bad game. 2009 was a terrible
year for gaming and I just can’t stand the games released that year.

DATATUNER FC Guitar Hero: Smash Hits is a really bad game. 2009 was a really
bad year for games

Juraska et al. (2019) Guitar Hero: Smash Hits is a very bad game, especially because
it came out in 2009.

Table 3: Examples of text generated by the different models
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Figure 2: Data-to-text language model fine-tuning setup


