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We are

Our mission is to invent and apply AI and 
Machine Learning technology to accelerate 
scientific discovery that benefits society.
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  Founded in 2013

$BN company 

80+ team of world class scientists and technologists (50+ 
doctorates/advanced degrees)

Technology enabling previously impossible tasks in bioscience 

Rich patent portfolio of over 400 patents

BenevolentAI Overview 



Largest private AI company in Europe

Top 5 global private AI companies  
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Focused on accelerating 
Drug Discovery as the first 
scientific domain 



Drug Discovery is broken!

- On average it costs about $2.6bn 
to develop a new drug

- It requires 12-15 years of R&D 
from start to market

- 97% of drug programmes fail
- Only less that 40% of known 

diseases are currently treatable
- Novel discoveries are rare and is 

mainly done by academia 
research



Eroom’s Law
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Eroom’s Law and Moore’s Law

8https://buildingpharmabrands.com/2013/08/16/erooms-law-of-pharma-r-d/

https://buildingpharmabrands.com/2013/08/16/erooms-law-of-pharma-r-d/
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1 scientific paper is published every 30 seconds

Individual scientists access a tiny fraction of available 
data in their lifetime - much less than the data 

generated in 1 day

All biological databases combined are less than 5% of 
available data

The BenevolentAI platform extracts facts and reasons 
from all relevant databases and literature, structured 

and unstructured

Power of the AI technology – Knowledge & Reasoning
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Unstructured Data

Large Scale NLP,
Machine Learning, 
Deep Learning, and 
Neural Reasoning 

TechnologyStructured Data

Rich proprietary knowledge

Proprietary Knowledge and Inference Models



BenevolentAI finds potential treatments for ALS
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AI-Driven Compound 
Design



AI-Driven Compound Design Overview
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Basics: Drugs are molecules
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https://en.wikipedia.org/wiki/Escitalopram

https://en.wikipedia.org/wiki/Escitalopram


Basics: Proteins are biomolecules

15
https://en.wikipedia.org/wiki/Protein

https://en.wikipedia.org/wiki/Protein


Basics: Ligand-Protein Binding
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https://en.wikipedia.org/wiki/Ligand_(biochemistry)



ML Tasks for Drug Design

• Property prediction
− Given a compound, predict biochemical properties 
− Given a compound and a protein, predict their binding affinity

• Generative chemistry
− Given a set of goals, generate a series of new molecule (maybe 

from a starting one) that best optimise those goals
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Property Prediction



Molecular Property Prediction: tasks and datasets
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MoleculeNet: A Benchmark for Molecular Machine Learning
Wu et al, arXiv 2017, https://arxiv.org/abs/1703.00564

• MoleculeNet
− Aims to be ImageNet of molecular ML
− A mid-size dataset of about 600K molecules and less than 800 tasks
− Binary classification or regression
− Under active development

• BenevolentAI
− In reality we care about more than 1800 tasks

https://arxiv.org/abs/1703.00564


Dataset Challenges

20

MoleculeNet: A Benchmark for Molecular Machine Learning
Wu et al, 2017, https://arxiv.org/abs/1703.00564

• Lack of labelled data
− Small in scale compared 

to other data rich 
domains (e.g. vision)

• Unbalanced data
− 1:50 pos to neg ratio

• Biased datasets
− Similar molecules with 

similar properties
− Makes it difficult to rely 

on pure random k-fold CV 
− Better to use scaffold

• Massive unlabelled data
− GDB-13 ~ 1B
− GDB-17 ~ 166B

https://arxiv.org/abs/1703.00564


Structured Input Representations
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• Molecular graph
− Atoms as nodes and bonds as vertices

• SMILES
− Simplified molecular-input line-entry system
− String representation
− SMILES is a string obtained by printing the symbol 

nodes encountered in a depth-first tree traversal 
of a chemical graph

https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system

https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system


Large Scale Multitask Learning
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Massively Multitask Networks for Drug Discovery
Ramsundar et al, 2015, https://arxiv.org/abs/1502.02072

https://arxiv.org/abs/1502.02072


ECFP-4 Fingerprint Features
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Novel Bayesian classification models for predicting compounds blocking hERG 
potassium channels
Liu et al, 2014, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125710/

Fingerprints in the RDKit
Landrum, 2012, 
http://www.rdkit.org/UGM/2012/Landrum_RDKit_UGM.Fingerpr
ints.Final.pptx.pdf

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125710/
http://www.rdkit.org/UGM/2012/Landrum_RDKit_UGM.Fingerprints.Final.pptx.pdf
http://www.rdkit.org/UGM/2012/Landrum_RDKit_UGM.Fingerprints.Final.pptx.pdf


Large Scale Multitask Learning
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Massively Multitask Networks for Drug Discovery
Ramsundar et al, 2015, https://arxiv.org/abs/1502.02072

https://arxiv.org/abs/1502.02072


Large Scale Multitask Learning
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Massively Multitask Networks for Drug Discovery
Ramsundar et al, 2015, https://arxiv.org/abs/1502.02072

• Addition of more tasks and data helps 
with generalisation of models

• Shared learnt representation seems 
to be informative

• As expected, additional tasks act as 
regularisation
− However, for some tasks, single-task 

model performance have been observed to 
be better than multitask

− This is mainly due to nature of some of 
the tasks that require bespoke feature 
learning layers

https://arxiv.org/abs/1502.02072


One-Shot Learning

26

Low Data Drug Discovery with One-shot Learning
Altae-Tran et al, 2016, https://arxiv.org/abs/1611.03199

https://arxiv.org/abs/1611.03199


Graph Convolutions
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Low Data Drug Discovery with One-shot Learning
Altae-Tran et al, 2016, https://arxiv.org/abs/1611.03199

Convolutional Networks on Graphs for Learning Molecular Fingerprints
Duvenaud et al, 2015, https://arxiv.org/abs/1509.09292

https://arxiv.org/abs/1611.03199
https://arxiv.org/abs/1509.09292


Graph Convolutions
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Low Data Drug Discovery with One-shot Learning
Altae-Tran et al, 2016, https://arxiv.org/abs/1611.03199

https://arxiv.org/abs/1611.03199


One-Shot Learning and Graph Convolutions
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Low Data Drug Discovery with One-shot Learning
Altae-Tran et al, 2016, https://arxiv.org/abs/1611.03199

• One-shot
− Non-trivial results in a 

low data setting

• Generalisation
− Does your runtime task 

benefit from other 
tasks?

• Graph convolution 
methods

− Learns graph 
transformation invariant 
representation

− Acts as architectural 
regularisation

https://arxiv.org/abs/1611.03199


Molecule Generation



Diversity and Goal Oriented Molecular Generation 
Optimisation
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Diversity-Oriented Synthesis: Developing New Chemical Tools to Probe and Modulate Biological Systems
Galloway et al, 2014, http://www-spring.ch.cam.ac.uk/publications/pdf/2014_DOS_379.pdf

• Molecular space is discrete
− There are enumerations of drug-like 

small molecules (e.g. GDB-13 ~ 1B, 
GDB-17 ~ 166B)

− No gradients over the input space
− Evolutionary algorithms (e.g. De Novo 

Design at the Edge of Chaos, 
Schneider and Schneider, 2016)

• Given a set of goals, evaluating all 
molecules is infeasible

• Learn generative algorithms or 
search policies to create novel and 
optimal molecules

http://www-spring.ch.cam.ac.uk/publications/pdf/2014_DOS_379.pdf


Variational AutoEncoder Models and Text Generation
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Generating Sentences from a Continuous Space
Bowman et al, 2016, http://www.aclweb.org/anthology/K16-1002

http://www.aclweb.org/anthology/K16-1002


VAE for Compound Generation
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Automatic chemical design using a data-driven continuous representation of molecules
Gomez-Bombarelli et al, 2016, https://arxiv.org/abs/1610.02415

https://arxiv.org/abs/1610.02415


Latent Space and Properties

34

Automatic chemical design using a data-driven continuous representation of molecules
Gomez-Bombarelli et al, 2016, https://arxiv.org/abs/1610.02415

https://arxiv.org/abs/1610.02415


Latent Space Exploration
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Automatic chemical design using a data-driven continuous representation of molecules
Gomez-Bombarelli et al, 2016, https://arxiv.org/abs/1610.02415

https://arxiv.org/abs/1610.02415


Latent Space Exploration
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Automatic chemical design using a data-driven continuous representation of molecules
Gomez-Bombarelli et al, 2016, https://arxiv.org/abs/1610.02415

https://arxiv.org/abs/1610.02415


Gradient-based Optimisation
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Automatic chemical design using a data-driven continuous representation of molecules
Gomez-Bombarelli et al, 2016, https://arxiv.org/abs/1610.02415

Dataset
{(x, y)}

Property 
Model

f(x)

Gradients

https://arxiv.org/abs/1610.02415


Gradient-based Optimisation
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Automatic chemical design using a data-driven continuous representation of molecules
Gomez-Bombarelli et al, 2016, https://arxiv.org/abs/1610.02415

https://arxiv.org/abs/1610.02415


Grammar Variational AutoEncoders: Encoder
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Grammar Variational Autoencoder
Kusner et al, 2017, https://arxiv.org/abs/1703.01925

• SMILES are not natural language
− It has a context free grammar
− SMILES can be represented as a parse tree

• Instead of generating character by character, generate production 
rules

https://arxiv.org/abs/1703.01925


Grammar Variational AutoEncoders: Decoder
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Grammar Variational Autoencoder
Kusner et al, 2017, https://arxiv.org/abs/1703.01925

https://arxiv.org/abs/1703.01925


GVAEs: Latent Space
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Grammar Variational Autoencoder
Kusner et al, 2017, https://arxiv.org/abs/1703.01925

https://arxiv.org/abs/1703.01925


GVAEs: Latent Space and Properties
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Grammar Variational Autoencoder
Kusner et al, 2017, https://arxiv.org/abs/1703.01925

https://arxiv.org/abs/1703.01925


GVAEs: Bayesian Optimisation and Valid Decoding
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Grammar Variational Autoencoder
Kusner et al, 2017, https://arxiv.org/abs/1703.01925

https://arxiv.org/abs/1703.01925


RL for Sequence Generation
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Molecular De-Novo Design through Deep Reinforcement Learning
Olivecrona et al, 2017, https://arxiv.org/abs/1704.07555

https://arxiv.org/abs/1704.07555


RL for Sequence Generation
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Molecular De-Novo Design through Deep Reinforcement Learning
Olivecrona et al, 2017, https://arxiv.org/abs/1704.07555

https://arxiv.org/abs/1704.07555


Discussion and 
Future Directions



Learning with Auxiliary Tasks

• Lack of enough labelled data
• Availability of very large scale unlabelled data

− GDB-13 and GDB-17

• Regularised learning with auxiliary tasks to learn 
better representations
− Pretraining and fine-tuning
− Semi-supervised learning
− Multitask learning
− Transfer learning
− One-shot learning
− GANs

• Automatic discovery of adaptive auxiliary tasks
− How to automatically learn auxiliary problems, architectures, 

and, loss functions?

• How to efficiently work with very large scaled data

47https://en.wikipedia.org/wiki/Semi-supervised_learning

https://en.wikipedia.org/wiki/Semi-supervised_learning


Generative Optimisation
• Learning reward functions

− Many property prediction models
− Molecular simulations
− Dealing with uncertainty

• Learning representations
− Discriminative representations learnt by property prediction models might not be suitable
− How to automatically learn shared and specialised representation

• Generative models
− Learning search and optimisation policies
− Multi-objective optimisation
− Learning to generate valid, diverse, and, novel compounds
− Learning intrinsic rewards
− Interpretable generative models

• Benchmarking
− Methods for evaluating generative models
− Learnt reward functions are proxy to real-world
− How to assess quality of latent spaces?
− Similarity based perturbation and discovery of known (hidden) sample 48



Interactive Learning with Users and Real-World Test Labs
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Thanks!

Get in touch if interested,

we are hiring!

@amirsaffari

amir.saffari@benevolent.ai

mailto:amir.saffari@benevolent.ai

