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Our mission is to invent and apply Al and
Machine Learning technology to accelerate
scientific discovery that benefits society.
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~BenevolentAl Overview

Founded in 2013
SBN company

80+ team of world class scientists and technologists (50+
doctorates/advanced degrees)

Technology enabling previously impossible tasks in bioscience

Rich patent portfolio of over 400 patents

BenevolentAl 3
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~*  Eroom’s Law

a Overall trend in R&D efficiency (inflation-adjusted)

FDA tightens
100 - regulation
post-thalidomide
l - FDA clears backlog
following PDUFA

regulations plus small
bolus of HIV drugs
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First wave of
biotechnology-
derived therapies

Number of drugs per billion US$ R&D spending*
o

0-1 I ] ! I I
1950 1960 1970 1980 1990 2000 2010

Diagnosing the decline in pharmaceutical R&D efficiency

Jack W. Scannell, Alex Blanckley, Helen Boldon & Brian Warrington

Nature Reviews Drug Discovery 11, 191-200 (March 2012) BenevolentAl | 7



*  Eroom’s Law and Moore’s Law
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https://buildingpharmabrands.com/2013/08/16/erooms-law-of-pharma-r-d/ BenevolentAl !
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~Power of the Al technology - Knowledge & Reasoning

1 scientific paper is published every 30 seconds

Individual scientists access a tiny fraction of available
data in their lifetime - much less than the data
generated in 1 day

All biological databases combined are less than 5% of
available data

The BenevolentAl platform extracts facts and reasons
from all relevant databases and literature, structured
and unstructured

BenevolentAl 9



Proprietary Knowledge and Inference Models

Unstructured Data

ANALYSIS

genetics

The support of human genetic evidence for approved
drug indications

", Judong Shen', e, 3
‘Aris Foratos™, Pak Chung Shaim*, Mulin Jun Li®?, Jumwen Wang?”, Lon R Cardon’, ohn C Whittaker? &
Philippe Sanseau®
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BenevolentAl finds potential treatments for ALS

BenevolentAl Knowledge Graph

Billions of sentences and
paragraphs from millions /
of scientific
research papers

w00

hypotheses

-

J
HYPOLHESES:

@ Targets in line with research @ Targets new to the researchers

Validated by SITraN, expert researchers on ALS

‘ ‘ | was impressed by the initial hypotheses that were presented at our first meeting
together. One of the ideas was very much a central part of our ongoing research and
immediately validated the technology. The second idea was quite a novel one for
treatments for ALS. Without the augmentation and insight that the technology allows us,
these are possibilities we may have otherwise overlooked. ¥ 9

Dr. Mead, Sheffield Institute of Translational Neuroscience

Medicine and computing
The |
The shoulders of gAlnts

mechanistically interesting.”

evenhanded manner.”
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Dr Richard Mead.. Lecturer in Neuroscience, University of Sheffield :
]
]
1
]
]
]
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]
]
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“BenevolentAl has already validated on pathway for drug discovery and opened up
a surprising new one. What their engine can do is look across vast swaths of
information to pick novel ideas repurpose...BenevolentAl has given me two ideas
for drugs for ALS, one is bang in the middle of what I and my teams are doing
already...Al is generating good ideas. The other is complicated and not obvious, but

“Benevolent Al is not a one-off. More and more people and firms believe that Al is
well placed to help unpick biology and advance human health...It can in weeks
elucidate salient links and offer new ideas that would take lifetimes of human
endeavor to come up with. I can also weigh up the evidence for its hypotheses in an

The Economist

This Master Algorithm, as;
I acomputer science profesy
: ) versity of Washington — R
: gos callsit, will be the last it
man makes. It will be abld
knowledge in the world —}
and future - fromdata. !

There does appear to!
: mildly, something of a “
! mo- paradox”. Canall three st
i bt Quite possibly, yes.

“Al-enabled technologies could double the economic growth rates of many

advance countries by 2035”

The Financial Times

“It [BenevolentAl] can also personalise solutions for individuals according to their
genetic make up, we are really excited about it, the potential is incredible”
Dr Laura Ferraiuolo, PhD. Lecturer in Translational Neurology

BenevolentAl
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Al-Driven Compound
Design




_Al-Driven Compound Design Overview

Compounds are
selected and sent
for synthesis and
biological assays

1

1

1
1
1

g
Al

Compound design
MPO

In-vitro/vivo
testing

Start

Candidate
selected

el Y  End
Candidate

selection ends
iterative design
cycle

Live, versioned model
data is called from
Compound Design
tool

Al models

Knowledge New experimental
graph relationships are
added to the graph

Latest data for
model training

BenevolentAl | 13



* Basics: Drugs are molecules

https://en.wikipedia.org/wiki/Escitalopram

BenevolentAl 14
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Proteins are biomolecules

Basics

15
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* Basics: Ligand-Protein Binding

https://en.wikipedia.org/wiki/Ligand_(biochemistry) BenevolegiaAl 113
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* ML Tasks for Drug Design

* Property prediction
- Given a compound, predict biochemical properties
- Given a compound and a protein, predict their binding affinity

* Generative chemistry

- Given a set of goals, generate a series of new molecule (maybe
from a starting one) that best optimise those goals

BenevolentAl 17



Property Prediction
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* Molecular Property Prediction: tasks and datasets

* MoleculeNet
- Aims to be ImageNet of molecular ML

- A mid-size dataset of about 600K molecules and less than 800 tasks
- Binary classification or regression
- Under active development

 BenevolentAl

- In reality we care about more than 1800 tasks

Physiology

(%) Tox21
ToxCast
: SIDER
Quantu.m Phys[ca[ BiﬂphySiCS ClinTox
Mechanics Chemistry
.+ QM7 . ESOL * HV - PCBA
- QM7b * FreeSolv IR PRI =S WY

MoleculeNet: A Benchmark for Molecular Machine Learning
Wu et al, arXiv 2017, https://arxiv.org/abs/1703.00564

BenevolentAl | 19



https://arxiv.org/abs/1703.00564

* Dataset Challenges

Lack of labelled data

- Small in scale compared

to other data rich
domains (e.g. vision)

Unbalanced data
- 1:50 pos to neg ratio

Biased datasets
- Similar molecules with
similar properties

- Makes it difficult to rely
on pure random k-fold CV
- Better to use scaffold

Massive unlabelled data

Category Dataset Description Tasks | Compounds
; M7 atomization ener 1 7165
L (§M’7b electronic pmpert%gs 14 7211
; ; ESOL solubilit 1 1128
FApR i Remioyy FreeSolv solvation en}\;rgy 1 643
PCBA bioactivity 128 439863
Bisphiice MUV bioactivity 17 93127
PDBbind binding affinity i 11908
HIV bioactivity 1 41913
Tox21 toxicity 12 8014
Bl ToxCast toxicity 617 8615
SIDER side effect 27 1427
ClinTox clinical toxicity 2 1491

- GDB-13 ~ 1B
- GDB-17 ~ 166B

MoleculeNet: A Benchmark for Molecular Machine Learning

Wu et al, 2017, https://arxiv.org/abs/1703.00564

BenevolentAl 20
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* Structured Input Representations

* Molecular graph
- Atoms as nodes and bonds as vertices

e SMILES
- Simplified molecular-input line-entry system
- String representation
- SMILES is a string obtained by printing the symbol
nodes encountered in a depth-first tree traversal
of a chemical graph

https://en.wikipedia.org/wiki/Simplified molecular-input_line-entry system

N OH
HN N 0
__/ 5
F
3
<
B N 0
\4
N N / \Ho
2
11_/ =/ 4

N1CCN(CC1)C(C(F)=C2)=CC(=C2C4=0)N(C3CC3)C=C4C(=0)0
(C==—— @ ==

21


https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system

* Large Scale Multitask Learning

Softmax nodes, one per dataset

Hidden layers
1-4 layers with 50-3000 nodes
Fully connected to layer below, rectified linear activation

Input Layer
1024 binary nodes

Massively Multitask Networks for Drug Discovery
Ramsundar et al, 2015, https://arxiv.org/abs/1502.02072 BenevolentA 22
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/A ECFP-4 Fingerprint Features
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* Large Scale Multitask Learning

Table 2. Median 5-fold-average AUCs for various models. For each model, the sign test in the last column estimates the fraction of
datasets (excluding the DUD-E group, for reasons discussed in the text) for which that model is superior to the PMTNN (bottom row).
We use the Wilson score interval to derive a 95% confidence interval for this fraction. Non-neural network methods were trained using
scikit-learn (Pedregosa et al., 201 1) implementations and basic hyperparameter optimization. We also include results for a hypothetical
“best” single-task model (Max{LR, RF, STNN, PSTNN}) to provide a stronger baseline. Details for our cross-validation and training

procedures are given in the Appendix.

Model PCBA MUV Tox21 Sign Test

(15.=128) [ =17) h=17) CI
Logistic Regression (LR) 801 J52 738 .04, .13]
Random Forest (RF) .800 774 .790 .06, .16]
Single-Task Neural Net (STNN) 795 A32 714 .04, .12]
Pyramidal (2000, 100) STNN (PSTNN) 809 745 740  [.06,.16]
Max{LR, RF, STNN, PSTNN} 824 781 790 [12,.24]
1-Hidden (1200) Layer Multitask Neural Net (MTNN) 842 797 785 .08, .18]
Pyramidal (2000, 100) Multitask Neural Net (PMTNN) 873 841 .818

Massively Multitask Networks for Drug Discovery
Ramsundar et al, 2015, https://arxiv.org/abs/1502.02072

BenevolentAl
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* Large Scale Multitask Learning

« Addition of more tasks and data helps
with generalisation of models

» Shared learnt representation seems
to be informative

» As expected, additional tasks act as

regularisation
- However, for some tasks, single-task
model performance have been observed to
be better than multitask
- This is mainly due to nature of some of
the tasks that require bespoke feature
learning layers

Massively Multitask Networks for Drug Discovery
Ramsundar et al, 2015, https://arxiv.org/abs/1502.02072

042 Tou21
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Figure 3. Held-in growth curves. The y-axis shows the change
in AUC compared to a single-task neural network with the same
architecture (PSTNN). Each colored curve is the multitask im-
provement for a given held-in dataset. Black dots represent means
across the 10 held-in datasets for each experimental run, where
additional tasks were randomly selected. The shaded curve is the
mean across the 100 combinations of datasets and experimental
runs.

BenevolentAl
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Compound Label
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New Compound

Low Data Drug Discovery with One-shot Learning
Altae-Tran et al, 2016, https://arxiv.org/abs/1611.03199
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* Graph Convolutions

Graph Convolution

pick u with (u,v) € E repeat for sum over u and apply new features
k = deg(v) setd = dist(v,u) remaining u nonlinearity for v
. /M ) o9
local A~ */ : A e
topology  : ’\ : \ . \ | K
: : i @ . - . : : P LS
features @ : ® i _5_. o : o 0—Q : Py @
: o L] = - . i . o . s . . . .
.. Q. oy R
@ o N o /. o—e° o
/9 8 «
* transform &9 @ @
whdy + pkd
Low Data Drug Discovery with One-shot Learning
Altae-Tran et al, 2016, https://arxiv.org/abs/1611.03199
Convolutional Networks on Graphs for Learning Molecular Fingerprints BenevolentAl | 27

Duvenaud et al, 2015, https://arxiv.org/abs/1509.09292
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TN Graph Convolutions

Graph Pool Graph Gather

max over new features sum all nodes molecular
neighbors and self for v featurization

" _- — 0
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Low Data Drug Discovery with One-shot Learning
Altae-Tran et al, 2016, https://arxiv.org/abs/1611.03199 BenevolentAl | 2
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* One-Shot Learning and Graph Convolutions

Table 1: Accuracies of models on held-out tasks for Tox21. Numbers reported are median

* One-shot on test-tasks. Numbers for each task are averaged for 20 random choices of support sets.
- Non-trivial results in a
low data setting Tox21 RF (50 trees) | RF (100 trees) | Siamese | AttnLSTM | ResLSTM
e Generalisation 10 pos, 10 neg 0.537 0.563 0.831 0.834 0.840
5 pos, 10 neg 0.537 0.579 0.790 0.820 0.837

- Does your runtime task

benefit from other 1 pos, 10 neg 0.537 0.584 0.710 0.687 0.757

tasks? 1 pos, 5 neg 0.571 0.572 0.689 0.595 0.815

. Graph convolution 1 pos, 1 neg 0.536 0.542 0.668 0.652 0.784

methods Table 3: Accuracies of models on held-out tasks for MUV. Numbers reported are median on

~  Learns graph test-tasks. Numbers for each task are averaged for 20 random choices of support sets
transformatTon nvariant SIDER RF (50 trees) | RF (100 trees) | Siamese | AttnLSTM | ResLSTM

) Lec‘zge;ezi:i‘zzctural 10 pos, 10 neg 0.710 0.741 0.501 0.683 0.712

o 5 pos, 10 neg 0.723 751 0.708 0.674 0.672

regularisation 1 pos, 10 neg 0.586 0.624 0.567 0.583 0.619

1 pos, 5 neg 0.561 0.579 0.546 0.565 0.634

1 pos, 1 neg 0.558 0.573 0.498 0.501 0.512

Low Data Drug Discovery with One-shot Learning
Altae-Tran et al, 2016, https://arxiv.org/abs/1611.03199 BenevolentAl | 29
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Molecule Generation




* Optimisation

* Molecular space is discrete

- There are enumerations of drug-like
small molecules (e.g. GDB-13 ~ 1B,
GDB-17 ~ 166B)

- No gradients over the input space

- Evolutionary algorithms (e.g. De Novo
Design at the Edge of Chaos,
Schneider and Schneider, 2016)

« Given a set of goals, evaluating all
molecules is infeasible

» Learn generative algorithms or
search policies to create novel and
optimal molecules

- “Diversity and Goal Oriented Molecular Generation

(b)

......................

/> CO,Me A/ 5 HO

. 5 N
O;:@ OH RN
1 "

27%

Diversity-Oriented Synthesis: Developing New Chemical Tools to Probe and Modulate Biological Systems

Galloway et al, 2014, http://www-spring.ch.cam.ac.uk/publications/pdf/2014 DOS 379.pdf

BenevolentAl 31
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* Variational AutoEncoder Models and Text Generation

RNNs

linear

RNNs work <EOS>

work

RNNs

“1i want to talk to you . ”

“ want to be with you . ”
“ do n’t want to be with you .
1 do n’t want to be with you .

”

she did n’t want to be with him .

he was silent for a long moment .

he was stlent for a moment .
it was quiet for a moment .
it was dark and cold .

there was a pause .

it was my turn .

Generating Sentences from a Continuous Space
Bowman et al, 2016, http://www.aclweb.org/anthology/K16-1002

<EOS>

work

N OH
HN N 0
—/ o

BenevolentAl

N1CCN(CC1)C(C(F)=C2)=CC(=C2C4=0)N(C3CC3)C=CA4C(=0)O
= & & 2 .

32
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/A VAE for Compound Generation
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clccccecl clcccccl
Discrete Structure ENCODER CONTINUOUS MOLECULAR DECODER Discrete Structure
SMILES Neural Network REPRESENTATION Neural Network SMILES

Latent Space

Automatic chemical design using a data-driven continuous representation of molecules
Gomez-Bombarelli et al, 2016, https://arxiv.org/abs/1610.02415 BenevolentAl 33
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* Latent Space and Properties

a T _ T T T T 4.0

3.6
1 W32
2.8
1 W24

o

20 O

O
1 M6
1.2
1 Hos
0.4
0.0

LIt

Jaded)

Automatic chemical design using a data-driven continuous representation of molecules
Gomez-Bombarelli et al, 2016, https://arxiv.org/abs/1610.02415 BenevolentAl | 34
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* Latent Space Exploration

| /Y \/\n/ /\)L/v \)l\s/ _\_4: »>=O
,\@ )H\ O)NH\ )(Lo/©/\)L 2 OA\O /J\ O \©\/| 9T AN 0:}/ \/\",N\/ :? \_(}*N?ic%j
EELJLO/\@/ QCL/ E\%Lj\g/\/ @;O O O O O NN O W, s o A~ ‘é
J e i C,/
A o () (
S = i = \J\/\/ N\ _ w
@i S @*ﬁ 5 ©§E> dh \

Automatic chemical design using a data-driven continuous representation of molecules
Gomez-Bombarelli et al, 2016, https://arxiv.org/abs/1610.02415 BenevolentAl 35
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* Latent Space Exploration
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Automatic chemical design using a data-driven continuous representation of molecules
Gomez-Bombarelli et al, 2016, https://arxiv.org/abs/1610.02415 BenevolentAl | 36
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clcceccl clcceccl
Discrete Structure ENCODER CONTINUOUS MOLECULAR DECODER Discrete Structure :
SMILES Neural Network REPRESENTATION Neural Network SMILES -
Latent Space -
A ' =
! 1
! 1
] ! 1 1
P ! 1 ] 1
1 1 1 1
: I 1 1
b 1 1 1
Dataset —l : : |
P 1 i
) - : .
. J
I
1
HO— % O
HO OH . )
R Gradients Most Probable Decoding
HO OH argmax p(*|z)

Automatic chemical design using a data-driven continuous representation of molecules
Gomez-Bombarelli et al, 2016, https://arxiv.org/abs/1610.02415 BenevolentAl | 37



https://arxiv.org/abs/1610.02415

* Gradient-based Optimisation

= w kg::m:_E':ETWORK (,JS") = 0.067 OPTIMIZATION 0.795 0.804
28 e #R et ressensr -e
IE & ENV a DECODER B v
Son
X X X
Z Q Q X2 e
. O 0O ~ NJ@@E@@N@
= (&) NI N 3 @ NI = 4 O NI = 5 NI = 6
38 QO Q
Qo 2NN 7z
3% 5 ] g q
= KO e(usT) = 0.004 0.080 0.000 0.580

Automatic chemical design using a data-driven continuous representation of molecules
Gomez-Bombarelli et al, 2016, https://arxiv.org/abs/1610.02415 BenevolentAl 38
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/A Grammar Variational AutoEncoders: Encoder

* SMILES are not natural language
- It has a context free grammar
- SMILES can be represented as a parse tree

» Instead of generating character by character, generate production

rules
SMILES grammar P form parse tree extract rules convert to 1-hot vectors map to latent space
® _ _ A3 ) ) 2}
smiles — chain Smi|85 smiles — chain Pl Et T dak L . @
chain — chain, branched atom " v hed e
chain — branched atom /c hain\\ caln ehaln, ri?;me |:. | l { | l | | I I | |
branched atom — atom, ringbond chain/ branched rmched . @
branched atom — atom | S chiaty = atom | | - l [ | ] l | I I | I
atom — aromatic organic branched 5 branched P el
p i oy Input SMILES | | *35—= stomnovons| | (T T MCT T T T TTTT] )
ringbond — digit RS A, T @ atom — a;?gﬁilcc (T T T T T TTTTT] ;
aromatic organic — 'c' l aroma’Fic e
aliphatic organic — 'C' arorLatic e organic [TTTTT T ITTT] (o
aliphatic organic — 'N' organic aa 'clececcl! ringbond — digit R - [ | [ | [ @o
digit — '1' digit — '1' \
e & [(TT T T[T T ]

Figure 1. The encoder of the GVAE. We denote the start rule in blue and all rules that decode to terminal in green. See text for details.

Grammar Variational Autoencoder
Kusner et al, 2017, https://arxiv.org/abs/1703.01925 BenevolentAl | 39
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T\ Grammar Variational AutoEncoders: Decoder

pop first sample rule & concatenate
(1\ map from latent space : convert to logits @ stack non-terminal mask out invalid rules push non-terminals terminals
_J O @ onto stack "cleceecl
mm =m =m = e e 1 I I I ®smnes—_:cham ®
4 ------------------------------------- -
mn  memn = sslED [-cnain - -\ T T T T T TTTTT|  choin—nchain, Onched
YR W . SO B—— .-
— branched < . : branched
[ D I || crein. P - - chain ==« L T T T T T T T T T T ]| chain—y ranche
branched branch " _branched branched ,
1 I | | | . | . I | | | J r;r::m? r:g:med r== r::;me "’I | | |_. | | | l [ | | | rgg;:me —Pati)rﬂ. ringbond
1 -
' - branched & ==~~~ ~==q--— -~~~ °""°" "~ ~°~“"~°"°"~°-°"f°~°~cT**T*["c""cC"-,"" aromatic
' atom, ringbond, "o Fe===atom===p[ [ [ [ | T [ T [ [ [ | Rom > organic
] 4 ------------------------------------------
- aromatic branched aromatic e~ gs
: organic, ringbond,  atom [* <= organic = "I | I ] I l l I I_l I | I_I organic = translate
'E: - branched 5 + o molecule
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Figure 2. The decoder of the GVAE. See text for details.
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* GVAEs: Latent Space
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* GVAEs: Bayesian Optimisation and Valid Decoding

3rd

1st 2nd
GVAE qo w Sﬁu\/\/
Table 2. Results finding best expression and molecule

'S & -

- SR AT Problem  Method Frac.valid  Avg. score
Expressions GVAE 0.99+0.01 3.47 £0.24

P CVAE 0.8640.06  4.75+0.25

Figure 5. Plot of best molecules found by each method. Molecules GVAE 0.3110.07 -9.57 +1.77
CVAE 0.17£0.05 -54.6612.66

Table 4. Best molecules found by each method

Method # SMILE Score
1 CCCcleecc(I)ec1CICCC-cl 2.94
GVAE CC(C)CCCCCcleee(Clncl 2.89

2

3 CCCclcce(Clhec1CCCCOC 2.80
1 Ccleeeec1CCCCICCC1CCelnnesl 1.98
2
3

CVAE CclcceeccCCCCI(COCIH)CCcelnnnl 1.42

CCCCCCCCC(CCCC212CCCnC1COC)122csss1 1.19

Grammar Variational Autoencoder
Kusner et al, 2017, https://arxiv.org/abs/1703.01925 BenevolentAl | 4
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/A RL for Sequence Generation

[SMILES from ChEMBLJ

~

s Prior network Scoring function
Bl _/
\/‘
( Augmented Likelihood < N
Update Agent
Likelihood
4 J’ Generate sequences (
Initialize Agent — Agent network >L SMILES strings J

Figure 4 The Agent. lllustration of how the model is constructed. Starting from a Prior network trained on ChEMBL, the Agent is
trained using the augmented likelihood of the SMILES generated.

Molecular De-Novo Design through Deep Reinforcement Learning
Olivecrona et al, 2017, https://arxiv.org/abs/1704.07555 BenevolentAl |
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/A RL for Sequence Generation

Model Prior  Agent Priorf  Agentf
Fraction predicted actives 0.03 0.97 0.02 0.96
Fraction similar to train active 0.02 0.79 0.02 0.75
Fraction similar to test active 0.01 0.46 0.01 0.38
Fraction of test actives recovered 0.00 0.13 0.00 0.07
Probability of generating a test set active (x1073) 0.17 40.2 0.05 15.0

-
® N
o QO _
o
® / ; N
P i

Pptive 0.95 0.95 0.73 0.66
Recovered test actives
H H
O o (\N/\/\/N P /N\ﬂ/o
/@ N\) o HO
H,N O Ni |
PPN PRGN I
1.00 0.99 0.98 1.00

P, active
Randomly selected

Molecular De-Novo Design through Deep Reinforcement Learning
Olivecrona et al, 2017, https://arxiv.org/abs/1704.07555

TDRD2 actives witheld from the training of the Prior
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* Learning with Auxiliary Tasks

» Lack of enough labelled data
« Availability of very large scale unlabelled data

GDB-13 and GDB-17

» Regularised learning with auxiliary tasks to learn
better representations

Pretraining and fine-tuning
Semi-supervised learning
Multitask learning
Transfer learning

One-shot learning

GANs

« Automatic discovery of adaptive auxiliary tasks

How to automatically learn auxiliary problems, architectures,
and, loss functions?

* How to efficiently work with very large scaled data

https://en.wikipedia.org/wiki/Semi-supervised learning
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https://en.wikipedia.org/wiki/Semi-supervised_learning

Generative Optimisation

» Learning reward functions
- Many property prediction models
- Molecular simulations
- Dealing with uncertainty

* Learning representations

- Discriminative representations learnt by property prediction models might not be suitable
- How to automatically learn shared and specialised representation

» Generative models
- Learning search and optimisation policies
- Multi-objective optimisation
- Learning to generate valid, diverse, and, novel compounds
- Learning intrinsic rewards
- Interpretable generative models

« Benchmarking
- Methods for evaluating generative models
- Learnt reward functions are proxy to real-world
- How to assess quality of latent spaces?
- Similarity based perturbation and discovery of known (hidden) sample BenevolentAl | 4



_Interactive Learning with Users and Real-World Test Labs

Compounds are
selected and sent
for synthesis and
biological assays

1

1

1
1
1

g
Al

Compound design
MPO

In-vitro/vivo
testing

Start

Candidate
selected

el Y  End
Candidate

selection ends
iterative design
cycle

Live, versioned model
data is called from
Compound Design
tool

Al models

Knowledge New experimental
graph relationships are
added to the graph

Latest data for
model training
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