On-line Random Forests

Amir Saffari, Christian Leistner, Jakob Santner Martin Godec, Horst Bischof

Institute for Computer Graphics and Vision Graz University of Technology, Austria

October 3, 2009

Motivations

• Random Forest (RF) is an ensemble of random trees.

- Random Forest (RF) is an ensemble of random trees.
- RFs achieve state-of-the-art performance in many applications.

- Random Forest (RF) is an ensemble of random trees.
- RFs achieve state-of-the-art performance in many applications.
- It is fast both during the the training and testing phase.

- Random Forest (RF) is an ensemble of random trees.
- RFs achieve state-of-the-art performance in many applications.
- It is fast both during the the training and testing phase.
- It is easy to implement them in a distributed computing environment or on multi-core CPUs/GPUs.

- Random Forest (RF) is an ensemble of random trees.
- RFs achieve state-of-the-art performance in many applications.
- It is fast both during the the training and testing phase.
- It is easy to implement them in a distributed computing environment or on multi-core CPUs/GPUs.
- RFs are inherently multi-class classifiers.

- Random Forest (RF) is an ensemble of random trees.
- RFs achieve state-of-the-art performance in many applications.
- It is fast both during the the training and testing phase.
- It is easy to implement them in a distributed computing environment or on multi-core CPUs/GPUs.
- RFs are inherently multi-class classifiers.
- On-line learning is needed for many applications where the size of the data is huge or the data is available from a stream.

S Split NodeLeaf Node

$$\mathcal{X} = \{(x_1, y_1), \cdots, (x_N, y_N)\}, x_i = [x_i^1, \cdots, x_i^D]^T, y_i \in \{1, \cdots, K\}$$

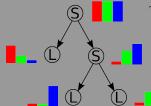
$$\texttt{Test}: g_p(x) > \theta_p, g(x) \in \mathcal{G}$$
$$\texttt{Gain}: \Delta L = L_j - \frac{|j_r|}{|j|} L_{j_r} - \frac{|j_l|}{|j|} L_{j_l}$$

Gini index :
$$L = \sum_{k=1}^{K} p_k (1 - p_k)$$

Entropy : $L = -\sum_{k=1}^{K} p_k \log(p_k)$

Feature Test : $\mathcal{G} = \{x^1, \cdots, x^D\}$

$$\mathcal{X} = \{(x_1, y_1), \cdots, (x_N, y_N)\}, x_i = [x_i^1, \cdots, x_i^D]^T, y_i \in \{1, \cdots, K\}$$

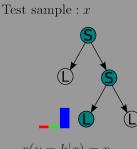


Test :
$$(g_p(x), \theta_p) : x^p > \theta_p$$

Test :
$$(g_r(x), \theta_r) : x^r > \theta_r$$

Discussions

Decision Trees



 $p(y=k|x) = p_k$

Decision Trees

Decision tree is a greedy method which uses a local optimization.

- Decision tree is a greedy method which uses a local optimization.
- The class of tests could be limited since for finding the best split an optimization step is required.

- Decision tree is a greedy method which uses a local optimization.
- The class of tests could be limited since for finding the best split an optimization step is required.
- Decision tree is very sensitive to data noise.

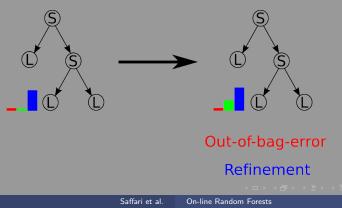
Discussions

Ensemble of Bagged Trees

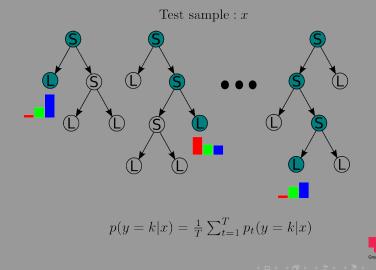
L. Breiman (1996)

Subsample with replacement : $\mathcal{X} \to \mathcal{X}_i \cup \mathcal{X}_o$

Train with in-bag-samples : \mathcal{X}_i Evaluate with out-of-bag-samples : \mathcal{X}_o



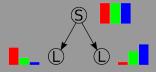
Ensemble of Bagged Trees



Random Forests

L. Breiman (2001)

$$\mathcal{X} = \{(x_1, y_1), \cdots, (x_N, y_N)\}, x_i = [x_i^1, \cdots, x_i^D]^T, y_i \in \{1, \cdots, K\}$$



Set of Tests : $S = \{(g_1(x), \theta_1), \cdots, (g_M(x), \theta_M)\}$

Gain :
$$\Delta L = L_j - \frac{|j_r|}{|j|}L_{j_r} - \frac{|j_l|}{|j|}L_{j_l}$$

Feature Test :
$$\mathcal{G} = \{x^1, \cdots, x^D\}$$

Hyperplane Test : $\mathcal{G} = \{g_w(x) = w^T x | w \in \mathbb{R}^D\}$

Discussions

Elements of On-line Learning

Sample (x, y) is arriving sequentially from a stream.

Discussions

Elements of On-line Learning

Sample (x, y) is arriving sequentially from a stream.

- On-line bagging.
- On-line random tree growing mechanism.

On-line Bagging

Oza and Russell (2001):

• Draw a random integer: $k \sim \text{Poisson}(\lambda)$

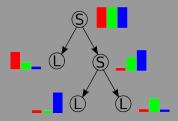
On-line Bagging

Oza and Russell (2001):

- Draw a random integer: $k \sim \text{Poisson}(\lambda)$
- If k > 0:
 - Train the model (tree) on (x, y) k times.
- else:
 - Use (x, y) to compute the out-of-bag-error and refinement.

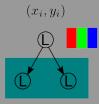
On-line Random Tree

Optimizing the structure of a tree on-line is difficult.

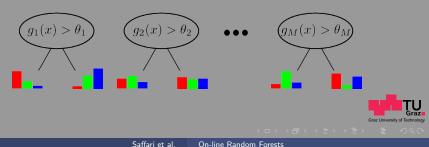


Discussions

On-line Random Tree

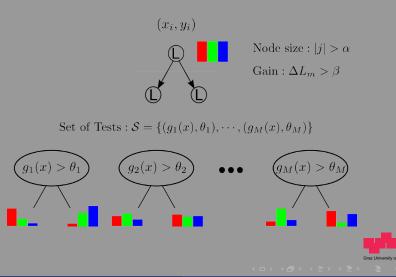


Set of Tests : $S = \{(g_1(x), \theta_1), \cdots, (g_M(x), \theta_M)\}$



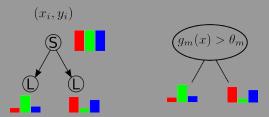
Discussions

On-line Random Tree



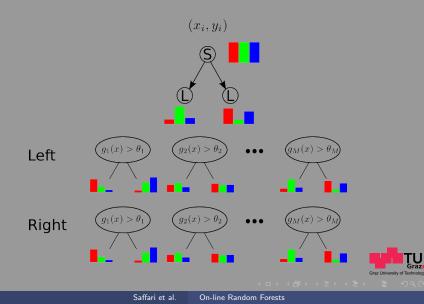
Discussions

On-line Random Tree



Discussions

On-line Random Tree



Discussions

Temporal Knowledge Weighting

 In some applications, the distribution of the data is changing over time.

Temporal Knowledge Weighting

- In some applications, the distribution of the data is changing over time.
- Select a tree randomly from $\{t | t \in \{1, \cdots, T\}, a_t > 1/\gamma\}$.
- If $OOBE_t > rand()$
 - Discard the *t*-th tree
 - $f_t = \text{newTree}()$

Discussions

Machine Learning Datasets

- $_{\odot}$ We set: T = 200, lpha = 0.1 * N_{train}, eta = 0.1
- For on-line boosting models, we use 50 selectors with 10 decision stumps in each selector and for multi-class datasets we use a 1-vs-all strategy.
- Code is available at:

www.ymer.org/amir/software/online-random-forests

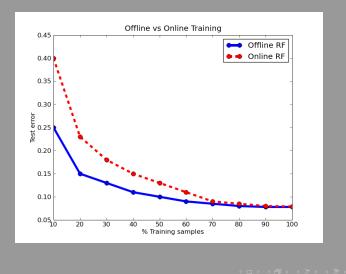
Dataset	# Train	# Test	# Class	# Feat.
Mushrooms	6000×20	2124	2	112
DNA	1400×20	1186	3	180
SatImage	3104×20	2000	6	36
USPS	7291 <i>×</i> 20	2007	10	256
Letter	15000×20	5000	26	16

Discussions

Machine Learning Datasets - Results

Dataset	Off-line RF	On-line RF	On-line Ada	On-line Logit	On-line Savage
Mushrooms	0.010	0.012	0.013	0.012	0.013
DNA	0.109	0.112	0.173	0.117	0.097
SatImage	0.113	0.118	0.257	0.152	0.156
USPS	0.078	0.086	0.224	<u>0.134</u>	0.139
Letter	0.097	0.104	0.263	<u>0.223</u>	0.241

Machine Learning Datasets - Results



- We only use simple Haar-features, without implementing any rotation and scale search and avoid any other engineering methods.
- $\,\circ\,$ We use 100 trees, $\alpha=$ 100, and $\beta=$ 0.1.
- For the on-line boosting, we use 50 selectors with each 150 features.
- We evaluate over public datasets: *Occluded Face*, *David Indoor*, *Sylvester*, *Rotating Girl*.
- An implementation of the on-line RF on a common NVidia GPU allows an additional 10-times speed up.

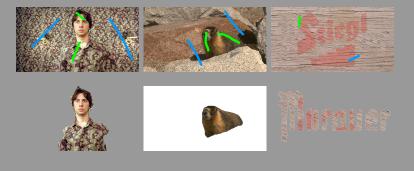
- We only use simple Haar-features, without implementing any rotation and scale search and avoid any other engineering methods.
- $\,\circ\,$ We use 100 trees, $\alpha=$ 100, and $\beta=$ 0.1.
- For the on-line boosting, we use 50 selectors with each 150 features.
- We evaluate over public datasets: *Occluded Face*, *David Indoor*, *Sylvester*, *Rotating Girl*.
- An implementation of the on-line RF on a common NVidia GPU allows an additional 10-times speed up.
- Video

Interactive Segmentation

- We use the interactive segmentation algorithm of Santner et al. (BMVC 2009).
- It uses the off-line RF to learn a foreground model, which then is used as a prior for a weighted Total Variation based segmentation algorithm.
- We replace the off-line RF with our on-line version.
- Both the on-line RF and the segmentation are implemented on a GPU.

Discussions

Interactive Segmentation



Discussions

Discussions

Comparison to On-line Boosting

• Robustness to label noise.

Discussions

- Robustness to label noise.
- Proper plasticity/elacticity trade-off.

Discussions

- Robustness to label noise.
- Proper plasticity/elacticity trade-off.
- Shrinkage factor effect.

Discussions

- Robustness to label noise.
- Proper plasticity/elacticity trade-off.
- Shrinkage factor effect.
- Inherently multi-class.

Discussions

- Robustness to label noise.
- Proper plasticity/elacticity trade-off.
- Shrinkage factor effect.
- Inherently multi-class.
- Suitable for GPU/multi-core/distributed computing.

Thank you! Code available at: www.ymer.org/amir/software/online-random-forests

