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Abstract. The application of semi-supervised learning algorithms to
large scale vision problems suffers from the bad scaling behavior of most
methods. Based on the Expectation Regularization principle, in this paper
we propose a novel semi-supervised boosting method, called SERBoost
that can be applied to large scale vision problems and its complexity
is dominated by the base learners. The algorithm provides a margin
regularizer for the boosting cost function and shows a principled way of
utilizing prior knowledge. We demonstrate the performance of SERBoost
on the Pascal VOC2006 set and compare it to other supervised and semi-
supervised methods, where SERBoost shows improvements both in terms
of classification accuracy and computational speed.

1 Introduction

Semi-supervised learning addresses the problem of “How to improve the per-
formance of an adaptive model using unlabeled data together with the labeled
data?”. Many supervised approaches obtain high recognition rates if enough la-
beled training data is available. However, for most practical problems there is
simply not enough labeled data available, whereas hand-labeling is tedious and
expensive, in some cases not even feasible, while a large amount of unlabeled
data is available. This is especially true for applications in computer vision like
object recognition and categorization.

Therefore, the central issue of semi-supervised learning is to find a way to
exploit this huge amount of obscured information from unlabeled data. Due
to a considerably large amount of literature in this subject and lack of space,
we refrain to mention most of the well-known semi-supervised methods and
encourage the interested readers to refer to a comprehensive overview of this
field [1] and also to the recent book of Chapelle et al. [2]. However, since we are
directly addressing the semi-supervised boosting methods, it should be noted
that there has been a few attempts in formulating the semi-supervised learning as
a boosting procedure, started by [3, 4]. Recently, based on the idea of graph-based
manifold regularization methods, Mallapragada et al. [5] and Chen and Wang [6]
have proposed other approaches for boosting models. Furthermore, in computer
vision, Cohen et al. [7] use both labeled and unlabeled data to improve the face
detectors. In [8] a semi-supervised approach for detecting objects in aerial images
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has been developed. Also related but only inspired by semi-supervised learning
is the work of Fei-Fei et al. [9] which presents an incremental approach to learn
object categories using Internet search as an additional information.

Recently, Mann and McCallum [10] have analyzed many semi-supervised
learning algorithms and noted that despite the vast amount of literature there
are not many practical applications, and they pointed out two main reasons for
that: 1) many algorithms (especially those based on EM) are fragile and are
heavily dependent on hyper-parameters, and 2) many algorithms are compu-
tationally expensive with a scaling behavior of O(n3), where n is the number
of unlabeled samples. This is counter productive since the full power of semi-
supervised learning can only be obtained with a large amount of unlabeled data.
Mann and McCallum proposed a method called Expectation Regularization on
exponential-family of parametric models which does not suffer from these prob-
lems. The basic idea is to augment the label-likelihood objective function with a
term that encourages the model predictions on unlabeled data to match certain
expectations.

Based on this idea, we propose a novel semi-supervised boosting algorithm
which has the following properties:

– It scales reasonably with respect to the number of labeled and unlabeled
samples, and in fact provides the same complexity as the traditional super-
vised boosting methods, while being very easy to implement.

– It naturally provides a margin regularizers for the boosting algorithm [11]
which has relations to the principles of maximum entropy learning [12].

– It provides a principled way of incorporating prior knowledge, e.g., [13], into
the learning process of the semi-supervised boosting model.

– It is robust with respect to the variations of its hyper-parameter.
– It is a generalization of the GentleBoost [14] algorithm to the semi-supervised

domain.
– On Pascal VOC2006 datasets, it outperforms the Linear SVM, TSVM [15],

Random Forests [16], and GentleBoost [14] by a large margin and gives
comparable results to the χ2-SVM [17–19] classifier while being considerably
faster.

This paper is organized as follows: we first derive the novel boosting formu-
lation based on the idea of expectation regularization in Section 2. In Section 3,
we demonstrate on the performance of our model and compare it to a few other
supervised and semi-supervised methods, while Section 4 provides a conclusion
and points out the future work.

2 Boosting with Expectation Regularization

We address the problem of semi-supervised binary classification. Assume that we
are given a prior conditional probability in the form of Pp(y|x) where y ∈ {−1, 1}
is the binary class label and x ∈ RD is a sample instance. This prior knowledge
expresses our belief regarding the conditional distribution of the labels given the
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input features. This prior knowledge can be obtained in different ways: it can be
only the label priors Pp(y) [10], as it will be shown later in this paper, it can be as
weak as a maximum entropy prior ∀x, y : Pp(y|x) = 0.5, or it can be the output
of another learning method. The later case is very interesting and important
in practice as it provides solutions for knowledge transfer and incorporation of
prior knowledge scenarios.

Given a set of labeled, XL, and unlabeled, XU , samples as:

XL ={(x1, y1), . . . , (xNL
, yNL

)},xi ∈ RD, yi ∈ {−1, 1}
XU ={x1, . . . ,xNU

},xi ∈ RD (1)

we denote X = XL ∪ XU as the overall collection of data samples. Also let the
Pp(y|x) be the prior probability and the P̂ (y|x) be the estimated probability
by the learning model. The goal is to use boosting [20, 14] to learn an additive
model F (x) =

∑T
t=1 ft(x) in a way that its classification accuracy is as high as

possible while its probabilistic predictions over the unlabeled samples resembles
the given prior.

2.1 Loss Function

We define a loss function for the learning process which contains two components
corresponding to the labeled and unlabeled data as:

L(F (x),X ) = LL(F (x),XL) + αLU (F (x),XU ) (2)

where LL and LU are the loss functions for the labeled and unlabeled samples,
respectively, and α ≥ 0 defines the contribution rate of the unlabeled loss.

Loss for the Labeled Samples Since we are trying to formulate our model
as a boosting method, we use the traditional exponential loss function for the
labeled data samples:

LL(F (x),XL) = IE(e−yF (x)) =
∑

x∈XL

e−yF (x). (3)

Note that we drop the scaling factors, e.g. 1
NL

, in calculating the expectations as
these parameters can be easily integrated into α. Since the boosting algorithms
are designed to minimize the exponential loss, it is known [14] that the minimizer
of Eq.(3) is:

F (x) =
1
2

log
P̂ (y = 1|x)
P̂ (y = −1|x)

. (4)

Therefore, we can see that:

P+(x) =P̂ (y = 1|x) =
eF (x)

eF (x) + e−F (x)
,

P−(x) =P̂ (y = −1|x) = 1− P̂ (y = 1|x) =
e−F (x)

eF (x) + e−F (x)
. (5)
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Note that for the notation brevity, we use the super-scripts symbols to refer to
the class labels in conditional probabilities.

Loss for the Unabeled Samples It is natural to define the unlabeled cost
function as the Kullback-Leibler (KL) divergence between the prior probability
and the optimized model [10]:

LU (F (x),XU ) = IE(D(Pp‖P̂ )) (6)

where:

D(Pp‖P̂ ) =
∑

y∈{−1,1}

Pp(y|x) log
Pp(y|x)
P̂ (y|x)

=

=
∑

y∈{−1,1}

Pp(y|x) logPp(y|x)−
∑

y∈{−1,1}

Pp(y|x) log P̂ (y|x) =

=−H(Pp) +H(Pp, P̂ ) (7)

is the KL-divergence. H(Pp, P̂ ) is the cross entropy between the target and
calculated model and H(Pp) is the entropy of the target distribution. Since
H(Pp) is a constant and does not depend on the optimized model, we can simply
drop it. Furthermore, since we are dealing with a binary classification problem,
by using Eq.(5) we can write:

H(Pp, P̂ ) =−
∑

y∈{−1,1}

Pp(y|x) log P̂ (y|x) =

=−
[
P+

p (x) log P̂+(x) + (1− P+
p (x)) log(1− P̂+(x))

]
=

=−
[
P+

p (x) log
P̂+(x)

1− P̂+(x)
+ log(1− P̂+(x))

]
=

=−
[
2P+

p (x)F (x)− F (x)− log(eF (x) + e−F (x))
]

=

=−
[
(2P+

p (x)− 1)F (x)− log(eF (x) + e−F (x))
]
. (8)

We define
yp = 2P+

p (x)− 1, yp ∈ [−1, 1] (9)

as the prior-label confidence for an unlabeled data sample induced from the prior
knowledge Pp(y|x). In order to facilitate the derivation of our boosting algorithm,
we use the exponential transformation of Eq.(8) and write the unlabeled loss
function as:

LU (F (x),XU ) =
1
2

∑
x∈XU

e−ypF (x)(eF (x) + e−F (x)) =
∑

x∈XU

e−ypF (x) cosh(F (x)).

(10)
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This loss function has a very similar structure to the exponential loss of the
labeled data, by interpreting the prior-label yp as the target value of F (x). The
role of cosh(F (x)) can be also interpreted as a margin regularizer [11] for the
boosting cost function. In fact, the cosh(·) ≥ 1 function has a convex form with
a minimum at F (x) = 0, which can prevent the learning function to become
over-confident and hence, can prevent over-fitting. Furthermore, if we set the
prior knowledge to be a maximum entropy prior, i.e.Pp(y|x) = 0.5, then for all
unlabeled samples yp = 0 and this loss reduces to a margin cost functional [11].
Therefore, our formulation also explains the relations of this margin regular-
izers to the maximum entropy learning principles [12] which is best stated by
Jaynes [21] as:

Information theory provides a constructive criterion for setting up prob-
ability distributions on the basis of partial knowledge, and leads to a type
of statistical inference which is called the maximum entropy estimate.
It is least biased estimate possible on the given information; i.e., it is
maximally noncommittal with regard to missing information.

2.2 Learning

We adopt the functional gradient descent view of boosting [11, 14] to derive the
loss function of the base models during each iteration of the boosting. According
to the gradient descent principles, at each step of boosting, we are looking for
a function ft(x) which if added to the current ensemble, F (x), would result in
an improvement in terms of the underlying objective function. We can write the
overall loss function of Eq.(2) as:

L(F (x),X ) =
∑

x∈XL

e−yF (x) + α
∑

x∈XU

e−ypF (x) cosh(F (x)). (11)

The gradients of L(F (x),X ) with respect to the current models F (x) can be
written as:

∇LF =
∂L(F (x),X )

∂F (x)
=
∑

x∈XL

−ye−yF (x)+

+ α
∑

x∈XU

−ype
−ypF (x) cosh(F (x)) + α

∑
x∈XU

e−ypF (x) sinh(F (x)). (12)

Therefore, the overall optimization problem for adding a function at tth stage
of the boosting can be formulated as:

ft(x) = arg max
f(x)

− 〈∇LF , f(x)〉 (13)

where 〈A,B〉 :=
∑

xA(x)B(x) is an inner product. We introduce the sample
weights as

∀x ∈ XL : wL(x) = e−yF (x) and ∀x ∈ XU : wP (x) = e−ypF (x) (14)
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and define the pseudo-labels for the unlabeled samples as

ŷ = yp cosh(F (x))− sinh(F (x)). (15)

Using Eq.(12), we can write the loss function 〈∇LF , f(x)〉 = Lf to be minimized
as:

Lf (X ) =
∑

x∈XL

−ywL(x)f(x) + α
∑

x∈XU

−ŷwP (x)f(x). (16)

Therefore, if we define the pseudo-weights for unlabeled samples as wU (x) =
|ŷ|wP (x), we can write the Eq.(16) as:

Lf (X ) =
∑

x∈XL

−ywL(x)f(x) + α
∑

x∈XU

−s(ŷ)wU (x)f(x) =

=
∑

x∈XL

yf(x)=1

−wL(x) +
∑

x∈XL

yf(x)=−1

wL(x) + α
( ∑

x∈XU

s(ŷ)f(x)=1

−wU (x) +
∑

x∈XU

s(ŷ)f(x)=−1

wU (x)
)
.

(17)

where s(·) is the sign function. If we normalize the sample weights to sum to
one, i.e.

∑
x w(x) = 1, then we know that:∑

x∈XL

yf(x)=1

wL(x) +
∑

x∈XL

yf(x)=−1

wL(x) = 1,
∑

x∈XU

s(ŷ)f(x)=1

wU (x) +
∑

x∈XU

s(ŷ)f(x)=−1

wU (x) = 1.

(18)
As a result, we can simplify the Eq.(2.2) further as:

Lf (X ) = 2
∑

x∈XL

yf(x)=−1

wL(x) + 2α
∑

x∈XU

s(ŷ)f(x)=−1

wU (x)− (1 + α). (19)

The first and the second term in this equation corresponds to the weighted sum
of the mis-classifications of f(x) with respect to the labeled samples and the
unlabeled (pseudo-labeled) samples, respectively. The last term is a constant
and thus, minimizing the loss function of Eq.(16) is equivalent to minimizing
the weighted mis-classification rate. Consequently, we can use any ordinary clas-
sification model as a weak learner by taking into account the sample weights.

The overall boosting procedure is depicted in Algorithm 1. The computa-
tional complexity of our boosting method is mainly dominated by the complexity
of its base models, as the overhead operations has a linear complexity in terms
of number of samples.

2.3 Priors

As discussed earlier, the prior probability can be obtained in different ways, and
since our method is general enough, one can use any source of information in
this respect. In order to show this fact, we use the following two priors in our
experiments:
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Algorithm 1 SERBoost: Semi-supervised Expectation Regularization based
Boosting
Require: Training samples: XL and XU .
Require: Prior knowledge: ∀x ∈ XU , y : Pp(y|x).
Require: T as the number of base models and α as the unlabeled loss parameter.
1: Set the model F (x) = 0.
2: Set the weights

∀x ∈ XL : wL(x) = 1
|XL|

and ∀x ∈ XU : wP (x) = 1
|XU |

3: Set the prior labels
∀x ∈ XU : yp = 2Pp(y = 1|x)− 1

4: for t = 1 to T do
5: Compute the pseudo-labels

∀x ∈ XU : ŷ = yp cosh(F (x))− sinh(F (x)).
6: Compute the weights

∀x ∈ XU : wU (x) = |ŷ|wP (x).
7: Normalize the weights

∀x ∈ XL : wL(x)← wL(x)/
P

x∈XL
wL(x) and

∀x ∈ XU : wU (x)← wU (x)/
P

x∈XU
wU (x).

8: Find the base function
ft(x) = arg min

f(x)

P
x∈XL

−ywL(x)f(x) + α
P

x∈XU
−sign(ŷ)wU (x)f(x).

9: Update the model
F (x)← F (x) + ft(x).

10: Update the weights
∀x ∈ XL : wL(x)← wL(x)e−yft(x) and
∀x ∈ XU : wP (x)← wP (x)e−ypft(x).

11: end for
12: Output the final model: F (x)

Maximum Entropy This is the simplest prior one can think of: ∀x, y : Pp(y|x) =
0.5. This can be stated as the maximum entropy prior which requires no knowl-
edge from the underlying problem. By using this prior, we can study the effect
of our margin regularizer term in Eq.(10).

Knowledge Transfer In a knowledge transfer scenario, we have a previously
estimated model, and with minimal supervision effort, we would like to include
its knowledge for training a new model (e.g. [13]). To show how this procedure
can be incorporated into our framework, we train another classifier over the
labeled data set, and use its predictions over the unlabeled samples as priors.

3 Experiments

3.1 Data Sets and Evaluation Methodology

We test the performance of our method on the challenging object category recog-
nition data sets of Pascal Visual Object Class Challenge 2006 [22]. This dataset
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consists of 2615 training and 2686 test images coming from 10 different cate-
gories. In our experiments, we solve the multi-class problems with a one-vs-rest
binary classification strategy.

In order to observe the effect of including the unlabeled data into the learn-
ing process of our boosting algorithm, we randomly partition the training set
into two disjoint sets of labeled and unlabeled samples. The size of the labeled
partition is set to be r = 0.01, 0.05, 0.1, 0.25, and 0.5 times of the number of
all training samples. We repeat the procedure of producing random partitions
for 10 times and report the average of the area under the curve (AUC) for each
model described in Section 3.3.

3.2 Feature Extraction

For feature extraction, we use a bag-of-words model which is partially similar
to the top-ranked participants of Pascal challenge in 2006 [22]. We first ex-
tract three sets of interest points with complementary behaviours: the Harris-
Laplacian (HL) points [23] for corner-like regions, the Difference of Gaussians
(DoG) points [24] for blob-like regions, and a regular dense sampling (Reg) with
a grid size of 8 pixels. Then we use SIFT [24] to describe these regions. For the
dense sampling method, we apply the SIFT-descriptor to patches with multiple
scales of 8, 16, 24, and 32 pixels. Following [17], we form three channels of HL-
SIFT, DoG-SIFT, and Reg-SIFT. For each channel, we find the class-specific
visual vocabulary by randomly selecting 50000 interest regions from 10 train-
ing images of the target class and by forming 100 cluster centers using k-means
method. The final vocabulary is the concatenation of all class-specific cluster
centers. Afterwards, each interest point descriptor is assigned to its closest clus-
ter center. We use the normalized 2-level spatial pyramids [25] to represent each
image and this way we construct 2 channels of L0 and L1 from each of HL-
SIFT, DoG-SIFT, and Reg-SIFT channels. Finally, we concatenate the image
descriptors of six channels to create our feature space. Hence, the dimensions of
the feature space is 15000 for VOC2006. As a preprocessing, we normalize each
sample to have a unit L1-norm.

3.3 Models

We compare the performance of the following supervised and semi-supervised
classification models:

χ2-SVM This model is a popular classifier for the bag-of-words approach, with
an excellent performance in object categorization problems [17–19]. The feature
kernel is constructed by a combination of χ2 distances between each level of
spatial pyramids with the same weightings suggested in [25] as:

KF (xi,xk) =
1∑

l=0

exp(−dl(xi,xk)/σl) (20)
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where dl is the χ2 distance, and σl is the average distance of lth level, respec-
tively. The LibSVM package [26] is utilized for training and testing of SVMs. It
should be noted that after a few cross-validation experiments, we fix the hinge
loss parameter C of SVMs to be 5 in all experiments as it gives equally good
performance for all classes.

Lin-SVM From computational complexity point of view, the χ2-SVM model is
the heaviest amongst all methods we study in this paper. In order to provide a
similar model which behaves better with respect to the number of samples, we
also use a linear SVM by utilizing the LibLinear [27] software package. We also
set the hinge loss parameter C to be 5 by conducting a 5-fold cross-validation
for this model.

TSVM We also compare the performance of our model with the Transductive
Support Vector Machines (TSVM) [15] which is a popular semi-supervised for-
mulation of SVMs. For this model, we use the SVMLight [15] package. Due to its
computational costs, we use the same parameter settings of the Lin-SVM model
here as well.

Random Forest The Random Forest (RF) classifier [16] is a collection of binary
decision trees. These trees are grown separately and by introducing randomness
at different levels of their learning process, one can get an ensemble of trees
which collectively has a reasonable performance. Due to their efficiency and
fast training/testing characteristics, RFs are gaining more attention in vision
community too (e.g. [28, 29]).

Following the original idea of Breiman [16], we grow the trees to a maximum
depth without pruning by computing a set of random tests at each decision
node. For each decision node, we first select a number of features randomly, and
then select randomly a few linear hyperplanes constructed from these features.
Afterwards, we select the best test according to their Gini indexes. Bosch et
al. [29] used 100 deep trees with depth of 20, computed considerably a large
number of random tests, and performed a random selection of different channels
for each test. It should be noted that decision trees are not efficient with respect
to their depth, both from memory and computational complexity point of view,
and additionally, in semi-supervised experiments, the number of labeled samples
could be too low to create deep trees. Therefore, we grow shallow trees with
maximum depth 2, use 10 random hypotheses, and construct a random forests
separately for each feature channel and average their predictions. As a result,
one of the main benefits of our approach is that we can effortlessly create huge
forests with as high as 10000 trees in our experiments.

GentleBoost If we ignore the unlabeled part of our algorithm (or set the α
to zero), we end up with the GentleBoost method of Friedman et al. [14]. As a
result, a comparison of our method with the GentleBoost enables us to study the
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Method χ2-SVM Lin-SVM RF GB QMUL LSPCH

AUC 0.9243 0.8911 0.8456± 0.0025 0.8978± 0.0012 0.936

Time 885 82 98 116 -

Table 1. First row: the average AUC for the χ2-SVM, Lin-SVM, Random Forest (RF),
GentleBoost (GB) models, and the winner of VOC2006 (QMUL LSPCH). Second row:
the average computation time for each model in minutes.

effect of including the unlabeled data into the learning process of boosting. As
weak learners, we use small random forests with 40 shallow trees grown exactly
as specified previously. The only difference is that at each stage of boosting, we
construct a separate RF for each feature channel, and instead of averaging their
results, we let the boosting to select the best one. We iterate the GentleBoost
algorithm for 250 iterations, as with our implementation this gives a comparable
computation time compared to the Lin-SVM model.

SERBoost The same settings as for Gentle Boosting are used for training the
weak learners of the SERBoost algorithm. We also iterate SERBoost for 250
rounds. We use the predictions of the χ2-SVM model over the unseen unlabeled
training data (the χ2-SVM is trained only on labeled partition) for simulating a
knowledge transfer scenario. One should note that this is just an example of how
other classifiers could contribute to the learning process of SERBoost, and from
application point of view the same principles can be applied to other knowledge
transfer scenarios.

3.4 Results

Fully Supervised Methods Table 1 shows the performance of the super-
vised models: χ2-SVM, Lin-SVM, Random Forest (RF), and GentleBoost (GB),
trained over the full training set (r = 1), together with the average computation
time. We also provide the performance of the winner of VOC2006 challenge [22]
as a reference.

Comparing the performance of the different models, it is clear that the χ2-
SVM produces the best result, followed by Lin-SVM and GentleBoost, while
the Random Forest does not seem to be competitive. However, looking into the
timings, the χ2-SVM has considerably larger computation burden compared to
all other methods. It should be noted that for the Random Forest, GentleBoost,
and SERBoost methods we use our naive and unoptimized C++ implementation,
while the other packages used for χ2-SVM, Lin-SVM, and TSVM are heavily
optimized regarding computation speed.

Figure 1(a) shows the performance of the fully supervised models with respect
to the ratio of labeled samples in the training set. As expected, the χ2-SVM is
producing the best performance by paying the price of heavier computations. It is
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Fig. 1. The performance (a) and computation times (b) of the χ2-SVM, Lin-SVM,
Random Forest (RF), and GentleBoost (GB) models with respect to the ratio of the
labeled samples in training set.

also clear that the GentleBoost has usually a better or comparable performance
compared to Lin-SVM.

Maximum Entropy Prior We turn our attention to study the behaviour of
the TSVM and our SERBoost models. Figure 2 shows the performance of the
SERBoost for two different values of unlabeled loss parameter α = 0.1, 0.25 and
when the maximum entropy prior is used. This figure also shows the performance
of TSVM and the performance of χ2-SVM and GentleBoost from Figure 1(a) as
references. The first considerable observation is that the SERBoost is performing
better or comparable to χ2-SVM even when there is no prior knowledge included
in its learning process. As a matter of fact, SERBoost outperforms χ2-SVM when
the number of labeled images are very low, and as we continue to add more
labels their performances become very close, and eventually after approximately
r = 0.5, χ2-SVM starts to perform better. It is also clear that TSVM is not
competitive neither in terms of performance nor in terms of computation time
with requiring 518 minutes for a single run. It should be noted that SERBoost
has on average 14 minutes computation overhead compared to the GentleBoost.

Comparison to GentleBoost From Figure 2, it is also clear that SERBoost
opens a large gap compared to its fully supervised counter-part, GentleBoost. In
order to investigate this fact, we conducted another set of experiments where we
duplicated the full training set and used the first half as the labeled set and the
second half as the unlabeled partition. We applied SERBoost with maximum
entropy prior to this data set and report their results in Table 2. One can clearly
observe that even with using the full training set and no additional information,
SERBoost outperforms GentleBoost by a nice margin in terms of AUC. It is also
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Fig. 2. The performance of SERBoost (SB) with maximum entropy prior (ME) for two
different values of unlabeled loss parameter, α.

Method GB SB, α = 0.01 SB, α = 0.1 SB, α = 0.25

AUC 0.8978± 0.0012 0.9125± 0.0014 0.9153± 0.0016 0.914± 0.0015

Table 2. The performance comparison of GentleBoost (GB) and SERBoost (SB) when
trained on full labeled training set.

interesting to see that with this simple approach, SERBoost comes closer to the
results of the winner of VOC2006.

Knowledge Transfer Prior Since our method provides a principled way of
including the prior knowledge as an additional source of information, we con-
duct experiments by training the χ2-SVM over the labeled partition and use its
predictions over the unlabeled partition as priors for SERBoost. The results are
shown in Figure 3 for two different values of α. When the number of labeled
samples are low, the predictions of the prior are mostly wrong, and therefore the
performance of SERBoost is inferior to those of trained with maximum entropy
priors. However, as the χ2-SVM starts to produce more reliable predictions, our
method also starts to improve its performance. As it can be seen, by moving
towards larger labeled sets, our method utilizes the priors well and outperforms
the maximum entropy based model.

Hyperparameter Sensitivity Another considerable fact is the robustness of
the SERBoost with respect to the variations of α within a reasonable working
range. If we compare the pairs of left and right plots in Figures 2 and 3, we can
see that the performance changes smoothly when one varies α. For example in
Figure 3, one can see that when the χ2-SVM predictions are not reliable (lower
values of r), having a smaller α results in a slight performance gain, while the
figure is reversed when the χ2-SVM starts to operate reasonably. However, the
overall change in the performance is not significant.
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Fig. 3. The performance of SERBoost (SB) with prior knowledge (KT) for two different
values of unlabeled loss parameter, α.

4 Conclusion

In this paper, we derived a novel semi-supervised boosting method, called SER-
Boost, on the principles of expectation regularization. This algorithm provides a
principled way of including the prior knowledge into learning process of a model
and naturally explains the probabilistic interpretation of the provided boost-
ing margin regularizer with the maximum entropy learning concept. SERBoost
scales very well with respect to the number of labeled and unlabeled samples, is
very easy to implement, and is robust with respect to the variations of its hyper-
parameter. The experimental results shows that SERBoost is able to exploit the
obscured information hidden in unlabeled data and can benefit easily from a
prior knowledge or domain expertise. SERBoost currently is designed for binary
classification tasks, and we plan to investigate the possibility of extending it to
multi-class/label problems.
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