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Abstract. In this paper a novel and generic approach for model-based
data clustering in a boosting framework is presented. This method uses
the forward stagewise additive modeling to learn the base clustering mod-
els. The experimental results on relatively large scale datasets and also
Caltech4 object recognition set demonstrate how the performance of rel-
atively simple and computationally efficient base clustering algorithms
could be boosted using the proposed algorithm.
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1 Introduction

Currently the boosting methods are amongst the best techniques for classifi-
cation problems. Recently, there has been a few attempts to bring the idea of
boosting to the clustering domain [1–3]. In general, ensemble clustering refers
to producing data partitions by utilizing results delivered by a set of clustering
models. Such an ensemble could result in improvements in different aspects, such
as performance, stability, and robustness, which are not attainable by individual
models [4]. There are mainly two dominant topics of interest in ensemble clus-
tering: 1) consensus function learning and 2) generating individual members of
the ensemble. The consensus function learning [5–8, 4, 9] usually acts as a post-
processing step to combine the results of different clustering models and usually
does not deal with how the individual members of an ensemble are generated.

However, the main concern of this paper is the second major topic which deals
with creating suitable models for the ensemble clustering tasks. In this context,
Topchy et al. [2] nicely incorporated the idea of using a consistency index as a
measure of how often a sample remains in the same cluster and preserves its label
as the new models are introduced to the ensemble. The consistency index is then
used for obtaining weights for the data samples. At each iteration, a new boot-
strapped dataset is constructed by using the weights as probability distribution,
and the next base model is trained over this dataset. The k-means algorithm is
used as the base learning model. They have shown that this method results in
a better performance compared to a non-boosting ensemble method [10] which
uses a uniform sub-sampling of the dataset.

Frossyniotis et al. [1] also used the concept of sub-sampling the dataset, by
using two different performance measures for assessing the clustering quality for



2

each sample, both based on the membership values of each sample to the indi-
vidual clusters. They incorporated a very similar approach used in the original
Discrete AdaBoost [11] for updating the weights for both samples and base mod-
els. They compared the performance of the k-means and fuzzy c-means to their
boosted versions and showed a better clustering results.

In this paper, we propose a novel boosting algorithm which provides a unified
and general framework to include any model-based clustering method as its
internal processing units. In Section 2, we will present this general boosting
framework and use the concept of forward stagewise additive modeling [12] for
finding solutions for ensemble members. The experimental results of the proposed
methods on a few real world datasets will be demonstrated in Section 3.

2 Methods

Let χ = {x1, . . . ,xN},xi ∈ RD be a finite set of samples. According to the
bipartite graph view of model-based clustering [13], we define a clustering al-
gorithm as a mapping from the input feature space, RD, to the space of data
models which are usually described by probability density models. These density
models usually are sampled from a known and fixed class of parametric func-
tions. Therefore, we assume that in a clustering model, there is a collection of
K probability density functions:

c(x) = [p1(x|θ1), . . . , pK(x|θK)]T (1)

where θk are the parameters of kth model. Additionally, each clustering system
is accompanied with an assignment function, h(x, k) = P (k|x), which based on
c(x) determines the membership of a sample to kth model. Therefore, we refer
to the combination of the data models and the assignment function, C(x) =
{c(x), h(x, k)} as a clustering model.

Note that Zhong and Ghosh [13] proposed this formulation as a general and
unified framework for model-based clustering algorithms, which encompasses
many different algorithms ranging from traditional k-means and mixture of mod-
els to deterministic annealing. For example in this framework, the k-means al-
gorithm uses equivariant spherical Gaussian density models together with the
following hard assignment function [14]:

h(x, k) =

{
1 if k = arg max

y
py(x|θy)

0 otherwise
(2)

The parameter estimation procedure for the density models are usually con-
ducted by maximizing the expected log-likelihood objective function:

L(θ,X ) =
N∑
n=1

P (xn)
K∑
k=1

h(x, k) log pk(xn|θk) (3)

where θ = [θ1, . . . , θK ] is the collection of all model parameters. In practice, the
sample prior probability is unknown and it is common to set it to be a uniform
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distribution as: ∀n : P (xn) = 1
N . Since some of the clustering algorithms do not

directly address the probabilistic models, the objective function of Eq.(3) can
be formulated in terms of a general loss function as:

L(θ,X ) = −
N∑
n=1

P (xn)
K∑
k=1

h(x, k)d(xn, k) (4)

where d(xn, k) is the loss for the sample xn under the kth model (or cluster).
For example, probabilistic models use d(x, k) = − log pk(x|θk), while in k-means
this is usually expressed by d(x, k) = ‖x − µk‖2 where µk is the kth cluster
center. We further simplify this objective function by introducing the sample
loss function as l(x) =

∑K
k=1 h(x, k)d(x, k) and rewriting the overall objective

function of Eq.(4) to be minimized as:

L(θ,X ) =
N∑
n=1

P (xn)l(xn) (5)

2.1 Additive Modeling

Assume that a set of M different clustering models {C1, . . . , CM}, are trained
on a given dataset with equal number of partitions, K. We refer to each of
these clustering models, Cm, as the base models and to the collections of them
as the ensemble model. The additive modeling approach is a general method for
generating an aggregated model out of a set of base models. For example, the
traditional boosting [11], and majority (plurality) voting strategies [15], can be
seen as special cases of additive modeling [12].

In the context of data clustering, once the cluster correspondence between
different models are solved, the assignment function for the ensemble can be
represented in an additive form as:

H(x, k) =
1
M

M∑
m=1

hm(x, k) (6)

where the function H(x, k) is an additive construction of M base functions,
{hm(x, k)}Mm=1. This is equivalent to the traditional scheme of classifier combi-
nation in the field of supervised learning problems. The corresponding objective
function for the whole ensemble can be written in additive form as:

LM (θ,X ) =
1
M

N∑
n=1

P (xn)
M∑
m=1

lm(xn) =
1
M

N∑
n=1

P (xn)LM (xn) (7)

where lm(xn) is the sample loss of xn under mth base clustering model, and
LM (x) =

∑M
m=1 lm(x) is the sample loss function for the ensemble of M base

clustering models. It should be noted that since we usually train a specific class
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of algorithms, e.g. k-means, over the same dataset, their individual losses are
comparable.

In order to facilitate the derivation of the new boosting algorithm for data
clustering, we use an exponential form of Eq.(7) as:

LM (θ,X ) =
1
M

N∑
n=1

P (xn)LM (xn) <
1
M

exp(
N∑
n=1

P (xn)LM (xn))

≤ 1
M

N∑
n=1

P (xn) exp(LM (xn)) =
1
M

N∑
n=1

P (xn)LMe (xn) (8)

where LMe (x) = exp(LM (x)). This derivation uses the fact that ∀x : exp(x) > x,∑N
n=1 P (xn) = 1, and Jensen’s inequality for the convex exponential transfor-

mation. This shows that the exponential loss function provides an upper bound
on the actual loss shown in Eq.(7).

2.2 Learning

The forward stagewise additive modeling [12] is a general approach for learning
the base models of the additive formulation of a function. It is an iterative algo-
rithm which at each stage, finds the best model which if added to the previous
set of models would result in an improvement in performance. It adds this model
to the ensemble and fixes its parameter and continues the search for the next
best model.

We apply the forward stagewise additive modeling approach to learn the
parameters of the base clustering models. Note that at the ith iteration, the
exponential ensemble loss function in Eq.(8) can be written as:

Lie(x) = exp(li(x))
i−1∏
m=1

exp(lm(x)) = Li−1
e (x) exp(li(x)) = w(x) exp(li(x)) (9)

where w(x) = Li−1
e (x) is usually referred in boosting community as the sample

weight, due to the fact that its value reflects the loss of previous models. Now
from Eq.(8), we can derive the objective function for the ith stage of boosting
as:

Lie(θ,X ) =
1
i

N∑
n=1

P (xn)w(xn) exp(li(xn)) (10)

which is the weighted version of the exponential loss function. Since as base
models we use normal model-based clustering algorithms, and they are designed
to minimize the loss function represented in Eq.(5), not the exponential form of
it, we show that under a mild condition the optimal solution of model for Eq.(5)
can be also an optimal solution of Eq.(10). If we assume that the sample loss is
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sufficiently small, we can approximate the exponential term with the first order
Taylor expansion as:

Lie(θ,X ) =
1
i

N∑
n=1

P (xn)w(xn) exp(li(xn)) ' 1
i

N∑
n=1

P (xn)w(xn)(1 + li(xn))

=
1
i

( N∑
n=1

P (xn)w(xn) +
N∑
n=1

P (xn)w(xn)li(xn)
)

(11)

Note that the first term in Eq.(11) is a fixed constant, so the optimization process
only depends on the last term which is exactly the weighted version of normal
objective function shown in Eq.(4). Therefore, finding a solution for the following
loss function:

Li(θ,X ) =
1
i

N∑
n=1

P (xn)w(xn)li(xn) (12)

ensures the optimality for the weighted exponential loss function Eq.(10). Note
that the assumption of li(x) to be small can be ensured for all clustering models
by scaling their original loss to a suitable range, which of course does not have
any effect on the solution they deliver.

2.3 Weak Learners

In supervised boosting methods, the base models are sometimes called weak
learners due to the fact that these models need to perform just better than
random guessing. Because of lack of labels, obtaining a similar concept is usually
difficult for clustering tasks. However, based on our boosting framework, we
propose a condition over base models which can serve both as a definition of
weak learner and also as an early stopping criteria for the boosting iterations.

In order to achieve an overall better clustering results, it is desirable that
with each addition of a base model, the average loss does not increase compared
to the previous setup of base models. In terms of loss function, this translates
into the condition of Lie ≤ Li−1

e . If we use the Eq.(10) and Eq.(8), we can write
this condition as:

1
i

N∑
n=1

P (xn)Lie(xn) ≤ 1
i− 1

N∑
n=1

P (xn)Li−1
e (xn)

βi =
∑N
n=1 P (xn)w(xn) exp(li(xn))∑N

n=1 P (xn)w(xn)
≤ i

i− 1
(13)

We use this condition during the boosting iterations to prevent addition of
newer models which are not able to provide better solutions to the current state
of the ensemble.
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Algorithm 1 CBoost: Boosting for Model-Based Data Clustering
1: Input dataset: χ = {xn}, n = 1, . . . , N .
2: Set: wn = 1/N, n = 1, . . . , N .
3: for m = 1 to M do
4: Compute: θm = arg min

θ

PN
n=1 P (xn)wnl(xn).

5: Compute: βm =
PN

n=1 P (xn)wn exp(lm(xn))PN
n=1 P (xn)wn

.

6: if m > 1 and βm > m
m−1

then
7: Break.
8: end if
9: Set: ∀n : wn ← wn exp(lm(xn))

10: Optional: Set: ∀n : wn ← wnPN
n=1 wn

.

11: end for
12: Find the cluster correspondence or a suitable consensus function for the clustering

models.

2.4 Discussion

The overall algorithm is shown in Algorithm.1. There are a few remarks regarding
this method. First, it provides a unified and generic boosting framework which
is able to include any model-based clustering algorithm as its building blocks.
In fact, any clustering algorithm which inherently optimizes a loss function can
be used here. Optionally, it is beneficial for the algorithms to be able to use the
sample weights in their optimization procedures. For those methods which lack
such ability, one can always use the bootstrap methods to reflect the effect of
sample weights.

Additionally, in this framework, there is essentially no need for solving cluster
correspondence during the boosting iterations. In fact, after boosting training is
over, it is quite possible to benefit from the state-of-the-art consensus function
learning methods to derive the final clusters out of the ensemble.

Finally, the computational complexity of this algorithm is mainly centered
around the complexity of its base models, as the only over-head operations are
just a simple update of sample weights together with a check for early stopping
condition.

3 Experiments

3.1 Methodology

As base models, we use ETree [16], and k-means. The ETree has a fast train-
ing and indexing capabilities with a complexity of O(N logN) [16], however in
general it provides inferior results compared to k-means.

In order to introduce the sample weights into the ETree algorithm, the update
rate of the leaf nodes for each sample is multiplied with the ηn = 1

1+exp(−w′
n)

,

w
′

n = wn−µw

σw . Since ETree does not deliver a fixed set of clusters, we apply an
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Table 1. Datasets used in the experiments.

Dataset No. Classes No. Features No. Samples

Synth 6 60 600
Pendigit 10 16 7494
Isolet 26 671 6238
Caltech4 4 420 1200

agglomerative clustering with group linkage over the leaf nodes to produce the
desired number of clusters. For the k-means we use the same algorithm as in [3],
which uses the weighted average for calculating the location of cluster centers.

To assess the quality of the clustering results, because ETree does not directly
address a particular density model, it is not possible to measure log-likelihood
for this model. Therefore, we use the Normalized Mutual Information (NMI ) [5]
between the true labels and the labels returned by the clustering algorithms.
Besides its statistical meaning, the normalized mutual information enables us to
compare clustering models with different number of partitions. Additionally,

3.2 Datasets

In order to show the performance of the proposed methods, we use four real-world
datasets, which are summarized in Table 1. The Synthetic Control, Pendigit,
and Isolet datasets are obtained from UCI machine learning [17] and UCI KDD
repositories [18]. These datasets have been standardized before performing any
clustering over them, i.e. for each feature, the mean has been subtracted and
then feature values have been divided by their standard deviation. Additionally,
we created a dataset from Caltech 4 object categorization repository by ran-
domly selecting 400 images from each category of Airplanes, Cars, Faces, and
Motorbikes, and then applying the Pyramid of Histograms of Orientation Gra-
dients (PHOG) [19] shape descriptor to these images. We used a 2-level pyramid
with 20-bin histograms using the same settings proposed by Bosch et al. [19].
We normalize these descriptors to have a unit L1-norm.

3.3 Results

Table 2 and Table 3 show the performance of ETree and k-means respectively,
together with their boosted versions over different number of cluster centers.
The values are the average and standard deviation of NMI over 50 independent
runs of the algorithms. We also implemented the algorithms proposed in [1,
2] and compared their performance with our method. Additionally, we applied
different consensus function learning methods, namely voting [20], HGPA, and
MCLA [5], to the final ensemble. For all boosting methods we set the maximum
number of base models to be 50 for ETree and 20 for k-means, respectively. Since
the method presented in [2] does not have an early stopping criteria, we report
its best result over different number of base models.
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Table 2. Results of clustering using ETree in terms of %NMI. K is the number of
experimental cluster centers. The next four columns are the performance of ETree itself
together with using it as the base model of our boosting algorithm (CB) and applying
voting [20], HGPA, and MCLA [5] consensus function learning methods. The next two
columns indicate the results of using the methods of Frossyniotis et al. [1] and Topchy
et al. [2] with ETree. For those methods we only report their best performance over
applying different consensus functions.

Dataset K ETree CB.Vote CB.HGPA CB.MCLA Fross [1] Topchy [2]

3 72± 06 75± 01 75± 03 75± 01 71± 03 68± 01
Synth 6 67± 04 80± 03 79± 01 83± 03 68± 03 75± 02

12 69± 03 78± 02 75± 03 81± 01 70± 04 73± 02

5 57± 05 59± 03 58± 01 59± 01 55± 04 54± 02
Pendigit 10 66± 03 69± 02 68± 03 69± 02 66± 03 69± 03

20 68± 02 73± 01 73± 02 73± 02 70± 06 69± 01

13 52± 03 71± 02 67± 02 72± 02 70± 02 71± 02
Isolet 26 56± 03 75± 01 69± 03 76± 03 68± 03 72± 04

39 58± 01 73± 01 66± 02 73± 01 70± 05 71± 03

4 41± 02 45± 03 43± 01 46± 01 42± 01 43± 02
Caltech 20 45± 05 48± 02 44± 03 48± 01 48± 03 47± 01

40 42± 03 46± 02 45± 03 47± 02 41± 03 43± 03

Table 3. Results of clustering using k-means and its boosted form. The details are
exactly the same as Table 2.

Dataset K k-means CB.Vote CB.HGPA CB.MCLA Fross [1] Topchy [2]

3 70± 09 77± 04 77± 02 78± 02 72± 03 73± 08
Synth 6 75± 03 78± 02 76± 03 82± 02 77± 03 76± 03

12 76± 05 78± 02 77± 01 80± 03 80± 04 76± 03

5 55± 02 55± 03 54± 02 57± 03 56± 04 54± 04
Pendigit 10 68± 03 69± 01 64± 03 69± 02 66± 03 67± 03

20 72± 02 74± 02 72± 02 74± 03 65± 06 70± 04

13 65± 04 69± 01 67± 02 71± 03 68± 02 66± 01
Isolet 26 69± 02 71± 02 70± 03 72± 02 70± 03 71± 03

39 70± 03 71± 02 69± 02 72± 01 70± 05 70± 01

4 37± 05 38± 03 37± 02 39± 02 39± 02 37± 02
Caltech 20 46± 04 46± 04 43± 03 48± 01 45± 03 47± 02

40 47± 06 48± 01 47± 02 49± 01 47± 02 46± 03

From these results, it seems that in single model track, the k-means method
has an expected advantage over ETree clustering. However, it should be noted
that in our C++ implementation of both algorithms, ETree is about 15 times
faster than k-means. Now looking into the results of our boosting algorithm, it is
obvious that in most cases, the performance of the boosted base models are im-
proved compared to the individual models. This clearly shows the advantage of
incorporating a boosting framework for clustering algorithms. Additionally, con-
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Fig. 1. Average vector quantization error (a) and NMI (b) versus the number of boost-
ing iterations for the Isolet dataset using ETree as the base model.

sidering the variance of the results, the stability and robustness of the clusterings
are also improved in most cases.

Looking further into these tables, it becomes clear that the boosted version of
ETree seems to be as competitive as boosted k-means. It emphasizes the power
of boosting method to transform a weaker method into a strong one. This is also
a very desirable property as in large scale datasets, the ETree outperforms the
k-means, in terms of computation time during both training and query phases.

Comparing the performance of different consensus function learning methods,
we can see that the MCLA is performing slightly better than voting, and the
HGPA seems to be not as competitive. Also we can see that in most cases our
method outperforms the previous algorithms proposed in [1, 2].

Figure 1 shows the average quantization error (the loss which both ETree
and k-means are optimizing) and the average NMI values, with respect to the
addition of each base model during the boosting iterations for the Isolet dataset
using the ETree as the base model. It is obvious that on average, with each
boosting iteration and addition of a new base model the average error is de-
creasing, while the average NMI is gradually increasing. This demonstrates the
success of the overall optimization process of the additive model proposed for
the clustering tasks. Additionally, in most experiments, the convergence of the
quantization error found to be an indication of the convergence for the NMI
values. This experimental observation suggest the effectiveness of the early stop-
ping method based on the convergence of the average loss during the boosting
iterations.

4 Conclusion

In this paper, a novel approach for clustering datasets in a boosting framework
was presented. The proposed methods are based on theoretical concepts of opti-
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mization using additive models in a forward stagewise approach. The experimen-
tal results, on a few real world and relatively large scale datasets demonstrate
the benefits of using an ensemble of base models in the proposed boosting frame-
work.
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