
Clustering in a Boosting Framework

Amir Saffari and Horst Bischof

Institute for Computer Graphics and Vision, Graz University of Technology
saffari@icg.tu-graz.ac.at, bischof@icg.tu-graz.ac.at
Abstract In this paper we present a novel approach for
creating partitions of data space using simple clustering al-
gorithms in a boosting framework. A general boosting algo-
rithm for clustering tasks is proposed, and solutions for di-
rectly optimizing two loss functions according to this frame-
work are obtained. Experimental results show how the per-
formance of relatively simple and computationally efficient
base clustering algorithms could be boosted using the pro-
posed algorithm.

1 Introduction

Without doubt, currently ensemble methods are amongst the
best techniques in classification domain. These methods in-
clude particularly a very successful genre called as boost-
ing, where any member of the ensemble of classifiers are
trained sequentially to compensate the shortcomings of the
previously trained models, usually using the notion of sam-
ple weights. Recently, there has been a few attempts to bring
the same idea of ensemble learning to the clustering domain.
However, this transition is not as straight-forward as seen at
a first glance, mainly because of the vague nature of the clus-
tering due to the lack of supervisory information commonly
used in classification tasks. Even after almost 60 years of re-
search in clustering domain, there are still debates on what
really is a clustering algorithm supposed to perform [20, 12].

In general, ensemble clustering can be divided into two
categories. In the first category, each member of the en-
semble is generated independent of the other models, usu-
ally with different initial conditions or parameters, and the
goal is usually to achieve a better clustering by just com-
bining the outputs of a set of diversely generated base mod-
els [6, 7, 15, 2, 4, 16, 19]. Since each clustering algorithm
usually results in a set of disjoint partitions of the data space,
it is conventional to represent the output of the clustering
model to an input data sample as an index to the correspond-
ing cluster. While this is convenient for a single algorithm,
it is a source of problems when we want to compare or com-
bine the outputs of different clustering methods, mainly be-
cause the ordering of the clusters are arbitrary in every clus-
tering algorithm. As a result, it is not meaningful to directly
compare the output indexes of different partitioning meth-
ods. This problem is referred to as cluster correspondence
problem in the clustering field. The correspondence prob-
lem becomes more complicated when different algorithms
are allowed to deliver different number of clusters. As a re-
sult, the problem of finding or learning a consensus function
for the clustering combination is usually the main concern
of this category. We will refer to this set of methods as
just ensemble clustering, because of their similarities with
non-boosting classification methods and their fundamental
differences with the next category.

The second category could be considered as the cluster-
ing counterpart of the boosting-based methods in classifi-
cation domain, since the main concern of these algorithms
is to create and add the new models to the ensemble based
on the performance of the previously trained set of mod-
els. It should be noted that in the same way for the previous
category, a meaningful combination of clustering methods
can only be achieved with a proper consensus function, but
here learning a consensus function is not the only goal of
the algorithms. We will refer to this set of algorithms as
boosting-based clustering. Tophcy et al. [18] incorporated
this idea with sub-sampling of the dataset using the sample
weights driven from a consistency index, which is a mea-
sure of how often a sample remain in the same cluster as
the new models are introduced to the ensemble. A set of
k-means algorithms is used as the base models, and after
finishing the boosting iterations, a consensus function is cal-
culated for the whole ensemble. They have shown that this
method results in a better performance compared to an en-
semble method [13] which uses a uniform sub-sampling of
the dataset. Frossyniotis et al. [10] used the same concept
of sub-sampling the dataset, by using two different perfor-
mance measures for assessing the clustering quality for each
sample, both based on the confidence (or membership) val-
ues of each sample to the individual clusters. Frossyniotis
et al. incorporated a very similar approach used in the origi-
nal Discrete AdaBoost [8] for updating the weights for both
samples and base models. They compared the performance
of k-means and fuzzy c-means to their boosted versions, and
showed a better clustering results on a variety of datasets.

In order to deploy the concept of boosting to the cluster-
ing domain, there is a need for solving one main problem
besides the consensus function calculations. This problem
can be stated as finding a proper performance measure in
order to assess the quality of both individual (local) clus-
tering algorithms and later on the whole collection of them
(global). Note that in this context we will use local refer-
ring to the base models and global for the ensemble model.
In general, such a global objective function should be mini-
mized by iterations of boosting algorithm based on the local
performance of base models. As a result, there should be a

mailto:saffari@icg.tu-graz.ac.at
mailto:bischof@icg.tu-graz.ac.at

Clustering in a Boosting Framework
strong and direct connection between local and global ob-
jectives. However, this direct connection is not clearly de-
scribed in [18, 10]. In details, Topchy et al. [18] used the
consistency index as the global objective function, but it is
not clear how this function is minimized by the iterative up-
dates of the base models using the local performance mea-
sure described in their algorithm. The same sort of prob-
lems also can be seen in [10] where there exist two local
performance measures to assess base models, but it is not
clear what kind of global objective functions could be min-
imized using iterative application of such loss functions to
base models and sample weights update.

Additionally, in both of the methods presented in [18,
10], there is a major problem with the local objective func-
tions as the base models are not directly optimizing them.
In other words, the base models are assessed on a criterion
which they are not designed to directly minimize. As a re-
sult, there is no guarantee for the base algorithms to result
in models which could optimize the local performance crite-
rion. Furthermore, using the sub-sampling with replacement
is not a proper way of introducing the sample weights to the
base models, because in most cases there exist a few outliers
in the dataset which are usually considered as hard samples.
Typically after a few iterations, the weights of these out-
liers will grow. As a result if we subsample the dataset with
replacement, we will generate fake clouds of data with re-
peated instances of these outliers, which will ultimately re-
sult in a very poor clustering base model.

Based on these facts, we present in this paper a boosting-
based clustering algorithm which builds forward stage-wise
additive models for data partitioning and overcomes previ-
ously explained problems in a theoretical framework. Need-
less to say, data clustering plays an important and essential
role in many computer vision applications. For example in
unsupervised or weakly-supervised object recognition prob-
lems, the visual words (or parts) are usually constructed by
clustering a set of descriptor responses to some selected im-
age regions (usually extracted by interest point/region detec-
tors), for example refer to [3] and references therein. It is
also well-known that many of classical segmentation algo-
rithms relies on clustering to find visually similar regions in
the images [5].

In Section 2 we will explain theoretical foundations for
this algorithm and we will describe how the presented meth-
ods relates to minimization of two loss functions. We will
present the experimental results of the proposed methods on
a few datasets in Section 3.

2 Methods
2.1 Additive Modeling
In order to formulate the overall process, we define the out-
puts of a clustering method as a collection of two functions,
i and f :

i : x ∈ RD → RK (1)

f : x ∈ RD → RD (2)

Roughly speaking, the function i determines the member-
ship probability of the sample to each cluster, and the func-
tion f provides a prototype from the partition that the input
sample belongs to, which is usually referred to as the cluster
center. Note that for those clustering algorithms which do
not incorporate directly the notion of cluster centers, the out-
put of function f can be seen as an instance from those sam-
ples clustered together, usually represented as their mean.

Let y = i(x) = [y1, . . . , yK]T be the membership prob-
ability vector where K is the number of partitions and the
values of each yk is given as:

yk = P (x ∈ Ck) (3)

where Ck represents kth cluster, and we require that∑K
k=1 yk = 1. In the simplest case, if we assume that there

is only one prototype per cluster, then we can represent all
prototypes in a matrix format like P = [p1 |. . . |pK]. Now
we define the function f as:

f(x) = Pi(x) (4)

In a more general case which we will consider later, it is
possible that the columns of the matrix P to be dependent
on the input sample, resulting in a general form of:

f(x) = P (x)i(x) (5)

In other words, the prototype within a cluster is not fixed
and depends on the input sample. Despite of its unusual
usage here, dependence of P on x will ease the definition of
additive model for the function f in the context of weighted
voting scheme presented later.

Note that this general definition encompasses both dis-
criminative and generative clustering algorithms [21]. Spe-
cially in the case of discriminative clustering (like k-means),
exactly one location of vector i(x) has a non-zero value
equal to one, and P is the collection of cluster centers. In
this case the representation given in (4) exactly corresponds
to the cluster center returned by the algorithm.

Assume that we are given a set of M clustering algo-
rithms, {(jm(x), gm(x))},m = 1, . . . ,M , all trained over a
common dataset with equal number of partitions, K. jm(x)
and gm(x) represent the membership and prototype retrieval
functions for the mth clustering algorithm, respectively.
Now we present the cluster membership function, i(x), us-
ing the additive form of:

i(x) =
M∑

m=1

βmjm(x) (6)

where the function i(x) is an additive construction of some
M base functions, {jm(x)} and βm ∈ R are multipliers
used to indicate the influence of each individual base func-
tion and we require that

∑M
m=1 βm = 1.

The presented additive model (6) could be thought as a
weighted voting scheme, specially when the base algorithms
are discriminative. Since the base functions are considered
to be a clustering algorithm on their own, we require them
to follow the same definitions given in (3) and (5).

Additionally based on definition given in (5), it is easy
to show that there exist solutions for P (x) given the base

Amir Saffari and Horst Bischof
prototype matrices as:

M∑
m=1

βmgm(x) =
M∑

m=1

βmPm(x)jm(x) =

= P (x)
M∑

m=1

βmjm(x) = P (x)i(x)

(7)

where gm(x) is the prototype retrieval function, and Pm(x)
is the matrix of cluster prototypes of mth base clustering
algorithm. So without loss of generality we can define the
additive formulation for prototype retrieval function as:

f(x) =
M∑

m=1

βmgm(x) (8)

Note that the formulation presented above is true regardless
of the cluster correspondence problem, however for a mean-
ingful voting in an ensemble of clustering models, we need
to establish the correspondences of clusters in base models.
We will discuss this issue later.

2.2 Learning
In order to learn the parameters of the additive model de-
scribed in previous section, we have to consider a loss
(or objective) function to be optimized by the algorithm.
Since clustering is an unsupervised method, which means
that there is no additional information available about the
data, such as labels, there is no direct assessment regard-
ing the quality of a model. As a result, it is usually hard
to justify whether an algorithm was successful in dealing
with a dataset or not. But nevertheless, many clustering al-
gorithms try to formulate the whole process into an opti-
mization framework and find the best solution for the given
dataset based on the proposed objective function. For ex-
ample the classical k-means algorithm uses the following
function as an optimization criteria in order to minimize the
intra-cluster variance:

L =
K∑

k=1

∑
xn∈Ck

‖xn − pk‖ (9)

where K is the number of cluster centers, Ck is the set of
samples assigned to the kth center, and pk is the mean point
of the Ck.

We define a general empirical loss function as:

L(x, i, f) = L(x,

M∑
m=1

βmgm(x),
M∑

m=1

βmjm(x)) (10)

which measures the quality of a given clustering model or
an ensemble of them based on the input samples. Depend-
ing on the loss function, it is possible to use both i and f
functions or one of them in order to evaluate the quality of
the clustering.

Now we can specify the forward stage-wise additive
modeling as an algorithm that tries to fit a new model at
each stage to the ensemble of previous models without al-
tering the parameters of the ensemble units [9]. The general
clustering algorithm based on such an approach is described
in Algorithm (1).
Algorithm 1 General Forward Stage-wise Additive Model-
ing for Clustering

1: Input dataset: X = {xn}, n = 1, . . . , N .
2: Initialize the model: f (0)(x) = 0, and i(0)(x) = 0.
3: for m = 1 to M do
4: Compute:

(βm, jm, gm) = arg min
β,j,g

∑N
n=1 L(xn, i(m−1)(xn)+

βj(xn), f (m−1)(xn) + βg(xn))
5: Set: f (m)(x) = f (m−1)(x) + βmgm(x) and

i(m)(x) = i(m−1)(x) + βmjm(x)
6: end for
7: Output the final model: f(x) =

∑M
m=1 βmgm(x) and

i(x) =
∑M

m=1 βmjm(x).

Note that according to this algorithm the new model will
be fitted to compensate the shortcomings of the previous set
of models. Now the main question is that how we can define
a proper loss function for a clustering algorithm and how this
function can be optimized at each step of the algorithm. In
next sections, we will provide solutions for the quantization
and correlation loss functions.

2.2.1 Quantization Error As explained earlier, the ob-
jective function (9), also known as quantization error, is
used widely in different center-based algorithms, like k-
means, VQ, and SOM [11]. Here in order to facilitate the
mathematical formulation, we redefine the inner part of (9)
as:

J(x, f) = ‖x− f(x)‖2 = (x− f(x))T (x− f(x)) (11)

We can simplify this equation into:

J(x, f) = xT x− 2xT f(x) + f(x)T f(x)

= ‖x‖2 + ‖f(x)‖2 − 2xT f(x)
(12)

Since we are searching for a function f(x) which minimizes
this equation, one can simply ignore the first term which is
independent of f(x) and write the loss function as:

J(x, f) ≈ ‖f(x)‖2 − 2xT f(x) (13)

Now we can derive the loss function formulation for an
additive model based on the same approaches used in (12)
and (13):

J(x, f + βg) = J(x, f) + J(x, βg) + 2βf(x)T g(x) (14)

Since in a forward stage-wise additive modeling, the pre-
vious models are kept intact, it will be shown later that the
first term of (14) is playing the role of sample’s weight and
represents the amount of loss of each sample up to the cur-
rent stage of the algorithm. Now looking into the second
and third terms, some interesting aspects of this loss func-
tion becomes clear. Firstly based on the second term, the
function βg(x) is needed to be a good clustering algorithm
on its own. Secondly the third term encourages the new ad-
ditional clustering algorithm to search for spaces which are
not in the vicinity of the already explored data spaces by
previous models.

Clustering in a Boosting Framework
But since many of existing clustering algorithms are de-
signed to work on their own, they are only able to give opti-
mization solutions to the second term of (14). As a result in
order to utilize existing methods, we will ignore the last term
of (14). Furthermore, for simplicity we give equal weights
to all base models, resulting in βm = 1/M .

Based on these facts, we define the exponential approxi-
mated version of this loss function as defined bellow:

L(x, f) = exp(J(x, f)) (15)

L(x, f + g) ≈ L(x, f)L(x, g) (16)

Now by substituting the (16) into the optimization step of
Algorithm (1) and defining the sample’s weight as the value
of the loss function at the current stage of the algorithm, we
can write:

gm = arg min
g

N∑
n=1

wnL(xn, g(xn)) (17)

and

wn = L(xn, f (m−1)(xn)) (18)

where wn shows the nth sample’s weight at the (m − 1)th
stage of the algorithm. As a result the inner optimization
of the algorithm, (17), can be seen as fitting a clustering
model using the sample weights at that stage of the algo-
rithm. Practically speaking, the samples which are receiving
higher error rates, namely hard samples, will get more em-
phasis in next iteration, while those with lower errors will
be considered as less important or easy samples.

It is straightforward to derive the iterative formulation for
calculation of the value of sample weights in next iteration
as:

wn ← wnL(xn, gm(xn)) (19)

It should be noted that since the quantization error, (11), is
always greater or equal to zero, the minimum of the expo-
nential loss is 1. As a result, solely based on the update
formula (19) the samples weight will always increase, how-
ever the normalization step which always accompanies the
weight updates solves this problem.

2.2.2 Correlation If one can normalize the data space,
so that ∀x : ‖x‖ = 1, we can further simplify the vec-
tor quantization error function (13) by only considering the
correlation of the data samples and their respective cluster
centers. As a result, the correlation based error functions
could be written as follow:

J(x, f) = −xT f(x) (20)

It is very easy to show that the exponential version of this
loss function has the same properties presented in (16).
Additionally, derivation of the minimization and sample’s
weight update stages follows exactly the same procedure de-
scribed in (17) and (19).
Algorithm 2 CBoost.VQ: Clustering in a Boosting Frame-
work using Vector Quantization Loss Function

1: Input dataset: X = {xn}, n = 1, . . . , N .
2: Set: W = {wn = 1/N}, n = 1, . . . , N .
3: Initialize the model: f (0)(x) = 0.
4: for m = 1 to M do
5: Compute:

gm(x) = arg min
g

∑N
n=1 wnL(xn, g(xn)).

6: Set: wn ← wnL(xn, gm(xn)) and renormalize after-
ward.

7: end for
8: Find the cluster correspondence for {gm(x)}, and re-

arrange the partitions orders.
9: Output the final model: f(x) = 1

M

∑M
m=1 gm(x) and

i(x) = 1
M

∑M
m=1 jm(x).

2.3 CBoost.VQ
Based on these principles, we introduce the CBoost.VQ al-
gorithm, which could be seen as the clustering counter-
part of famous boosting classifiers, specially GentleAd-
aBoost [9]. Algorithm (2) represents the overall additive
modeling and learning processes.

2.4 Base Models
It is clear that in order to have a successful clustering perfor-
mance based on the CBoost.VQ algorithm, there is a need for
base clustering models capable of working with weighted
samples. Unfortunately, not many of famous clustering
methods are capable of making benefits of this additional in-
formation. Like [18, 10], for such algorithms, sub-sampling
with replacement according to the sample weights could be
used to reflect the effect of sample importance, however this
will result in problems mentioned in Section 1.

Additionally, because of the additive nature of the algo-
rithm which tries to compensate the shortcomings of the
previous models in each step, it is more desirable to uti-
lize simpler and computationally efficient base algorithms.
Note there is no clear definition of a weak clustering model
as what is conventional in classification domain, mainly be-
cause of lack of a concrete loss function. However, one can
still refer to very simple clustering algorithms which are per-
forming better than random partitioning as weak models.

Based on these facts, we briefly present a simple and
computationally efficient clustering algorithm for base mod-
els which is a combination and modification of two exist-
ing algorithms, namely Leaders and Agglomerative meth-
ods. Recently, Viswanath and Jayasurya [19] used Leaders
in an ensemble clustering context, based on an older existing
algorithm described in [14]. Since this algorithm just uses
a one-time scanning of the data samples in order to accom-
plish the partitioning of the data space, it is computationally
very efficient. However because of the random and simple
nature of the method, its results are usually considered very
poor compared to the performance of other algorithms.

Before proceeding into details of the proposed methods,
we present our base model in Algorithms (3) and (4). The
clustering approach for Leaders for Weighted Samples is a

Amir Saffari and Horst Bischof
Algorithm 3 Leaders for Weighted Samples
1: Input dataset and sample weights: X = {xn},W =
{wn}, n = 1, . . . , N .

2: Initialize the leaders (clusters): P = {}.
3: Initialize the leader weights: C = {}.
4: Select the distance threshold: τ .
5: for n = 1 to N do
6: Randomly select one sample, xi, using the weights as

probability distribution, and remove it from the list of
samples to be chosen later.

7: if P is empty then
8: Add xi as the first leader: P = {xi} and C =

{wi}.
9: else

10: Find the first leader which ‖xi − pj‖ ≤ τ, pj ∈
P .

11: if There was no pj satisfying the distance criterion
then

12: Add xi as the next leader: P ← P ∪ {xi} and
C ← C ∪ {wi}.

13: else
14: Update: pj ← cjpj+wixi

cj+wi
and cj ← cj + wi.

15: end if
16: end if
17: end for
18: Output the Final Partitions: (P,C).

very straightforward center-based partitioning method: for
any input sample xi, it finds the first leader (cluster center)
which is close enough to the sample. Note that the algorithm
even does not search for best matching leader, just the first
encounter is selected (based on the leaders order in the set
P). If there is no such a center, xi itself joins the group of
leaders. Obviously the chosen leaders depends largely on
the order in which the samples are presented to the algo-
rithm, and with the use of sample weights, we bias it toward
those areas in the data space where the previous algorithms
had difficulties clustering them. Furthermore, we calculate
the next location of a leader using the sample weights be-
longing to that particular leader. Additionally, because of
the random nature of the Leaders algorithm we expect to
observe a large variance in the number of leaders and their
locations.

However, there exists one major problem with the pre-
sented Leaders algorithm which makes it alone not useful
for CBoost.VQ base models: there is no control on the num-
ber of cluster centers (leaders). As shown previously in
Section 2.1, the weighted voting scheme requires each base
model to deliver a fixed number of cluster centers. Assume
that the number of leaders is ‖P‖ = KP while the number
of desired clusters is K. With Leaders as base models, there
could be three different situations: KP < K, KP = K, and
KP > K. For the first case, we have to try again or lower
the distance threshold value, τ , until we get into second or
third conditions. Obviously the second case is the desired
situation, so there is no need for any other action. In order
to solve the third problem (which practically is usually the
case), we perform another agglomerative clustering [9] over
Algorithm 4 Agglomerative Clustering of Leaders
1: Input the Leaders model (P,C).
2: Input the desired number of final clusters, K.
3: for k = 1 to KP −K do
4: Choose the closest leaders:

(i, j) = arg min
i,j

‖pi − pj‖.

5: Merge these leaders:
pnew = cipi+cjpj

ci+cj
and cnew = ci + cj .

6: Remove ith and jth leaders from P and C, and add
(Pnew, Cnew) to the list of leaders.

7: end for
8: Output the Final Partitions (Leaders): P .

the leaders in order to get a fixed number of cluster centers,
as presented in Algorithm (4). Note that this algorithm is
very similar to the agglomerative clustering method using
weighted average distance linkage.

After formation of the hierarchy of leaders by applying
agglomerative clustering over them, during the query stage,
we find the first leader close enough to the sample given the
distance threshold τ , and then use the hierarchy to find its
label.

2.5 Cluster Correspondence
As mentioned before, after finishing the boosting iterations,
we have to solve the cluster correspondence problem be-
tween the base models, {jmx}. Following [17, 18], we re-
arrange the orders of labels in all of the base models ac-
cording to the first one. Since the number of the partitions
are fixed for the base models, we first count the number of
shared samples between clusters of both the first model and
the next one in the ensemble. This gives us a K × K sim-
ilarity matrix between pairs of partitions in two clustering
algorithms. Then we use the Hungarian algorithm to find
the best assignment for the cluster correspondence using the
similarity matrix.

3 Experiments
3.1 Methodology
Since the clustering algorithms are trained in an unsuper-
vised manner, it is natural to assess their qualities in an un-
supervised settings too, but since many other similar works
in this area use the classification error as the final quality
measure, we adopt a similar approach in our methodology.
In particular, we set the K in the algorithms to be the num-
ber of classes in the datasets, and use the Normalized Mu-
tual Information, NMI, [15] between the true labels and the
labels returned by the clustering algorithms as the quality as-
sessment measure. It should be noted that the NMI value is
bounded between zero and one, which correspond to a pure
random and a perfect classification results, respectively.

3.2 Datasets
In order to show the performance of the proposed meth-
ods, we conducted experiments on a few synthetic and real-
world datasets, which are summarized in Table 1. Both of
3-Gaussians and Half-rings are synthetic datasets, while Iris

Clustering in a Boosting Framework

0
0
5
7

Dataset Classes Features Samples k-means
3-Gaussians 3 2 1500 0.846± 0.00
Half-rings 2 2 1000 0.645± 0.00
Iris 3 4 150 0.656± 0.01
Pendigit 10 16 7494 0.692± 0.01

Table 1: Datasets used in the experiments: The second column
shows the number classes, the third column shows the number of
features, the third column shows the number of samples in the
dataset, and the last column indicated the NMI value of the tra-
ditional k-means algorithm.

Dataset Leaders CBoost.VQ+Leaders
3-Gaussians 0.572± 0.105 0.863± 0.021
Half-rings 0.624± 0.249 0.924± 0.000
Iris 0.523± 0.104 0.715± 0.005
Pendigit 0.546± 0.092 0.726± 0.089

Table 2: Experimental results of base models (second column) and
boosted version of them (third column). All experiments has been
conducted 50 times independently and the values shown in this ta-
ble are the average and standard deviation of the NMI measure.

and Pendigit datasets are obtained from UCI machine learn-
ing repositories [1]. With the first two datasets we want to
demonstrate the performance of the proposed algorithms on
low dimensional data spaces, which enables a better visu-
alizations, compared to later real world datasets which are
high dimensional. The 3-Gaussians dataset is generated
from samples drawn randomly from 3 different Gaussian
distributions with different mean and variance parameters,
and is shown in Figure 1(a). The Half-rings dataset is shown
in Figure 1(b). All datasets have been standardized before
performing any clustering over them, i.e. the mean of the
features have been removed and then divided by their stan-
dard deviations.

3.3 Results
The experimental results of the described algorithms on
these datasets are shown in Table 2, for 50 times independent
simulations using the quantization error as the loss function.
The second column of this table shows the mean and stan-
dard deviation of the performance of the individual Leaders.
For these simulations we used a uniform distribution of the
sample’s weights, giving equal importance to every sample
in the dataset. As it can be seen from the results, the perfor-
mance of the Leaders has a very high variance and performs
on average worse than k-means, Table 1.

Now looking at the third column of the Table 2 shows
the results obtained by using CBoost.VQ algorithm incorpo-
rating the Leaders as base models. One can clearly observe
the improvements both in terms of average performance and
also stability of the results (very low variance).

Figure 2 shows the Half-rings dataset and the clustering
results using k-means, Leaders, and CBoost.VQ with Lead-
ers as base models. Note that this dataset is considered to be
a difficult example for center-based algorithms, as it can be
seen from the performance of the k-means.
−3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3
3−Gaussians dataset

(a) 3-Gaussians

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Half−rings dataset

(b) Half-rings

Figure 1: Synthetic datasets used in experiments: (a): 3-
Gaussians, and (b): Half-rings.

Figure 3 shows the average quantization error value (nor-
malized with the number of samples in the dataset), with re-
spect to the addition of each base model during the boosting
iterations for the 3-Gaussians dataset. It is obvious that with
each iteration of boosting and addition of a new base model
the average error is decreasing, which demonstrates the suc-
cess of the forward stage-wise optimization of the proposed
loss function using the additive model proposed for the clus-
tering tasks. Another observation is the convergence of the
total quantization error to almost the same error value of a
converged k-means (the red-dashed line in this figure).

4 Conclusion
In this paper, we presented a novel approach for clustering
datasets in a boosting framework. The proposed methods are
based on theoretical concepts of optimization using additive
models in a forward stage-wise approach. We provided so-
lutions for optimizing the quantization loss function which
is used widely in center-based clustering algorithms. The
experimental results also suggest the good performance of
these methods on a few synthetic and real world datasets.
However, we would like to extend the application of these

Amir Saffari and Horst Bischof
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
k−means on Half−rings dataset

(a) K-Means

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Leaders on Half−rings dataset

(b) Leaders

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
CBoost+Leaders on Half−rings dataset

(c) CBoost.VQ+Leaders

Figure 2: Results of (a): k-means, (b): Leaders, and (c):
CBoost.VQ+Leaders on Half-rings dataset.

algorithms into partitioning large-scale datasets. The mo-
tivation behind moving to large-scale real-world datasets
comes from the fact that the base models which we used
in this paper, are computationally very efficient methods,
and a clever combination of their results using the boost-
ing framework could lead to a better performance than what
5 10 15 20 25 30 35 40 45 50
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Average Quantization Error vs Base Model

Base models

Q
ua

nt
iz

at
io

n
er

ro
r

Figure 3: Average vector quantization error versus the number of
base models in the boosting iterations. The red-dashed line is the
average quantization error of the k-means after convergence.

we could expect from traditional algorithms, in both quality
of the clustering and computational costs. On average, dur-
ing the experiments for evaluation purposes, the CBoost.VQ
algorithm was almost two times faster than the k-means, and
it should be noted that our code is still in its non-optimized
stage, so we expect to achieve a higher computational speed
in future.

Additionally we would like to investigate the relation-
ships between these methods and the other class of unsuper-
vised methods named density estimator, since one can think
of local base models as local density estimators, for exam-
ple similar to local modes of mean shift algorithm. However
further research into this direction is needed.

Acknowledgement

This work has been supported by the FWF Austrian Joint
Research Project Cognitive Vision under projects S9103-
N04 and S9104-N04 and the EU FP6-507752 NoE MUS-
CLE IST project.

References

[1] C.L. Blake D.J. Newman, S. Hettich and C.J. Merz.
UCI repository of machine learning databases.

[2] S. Dudoit and J. Fridlyand. Bagging to improve the
accuracy of a clustering procedure. Bioinformatics,
19(9):1090–1099, 2003.

[3] R. Fergus. Visual Object Category Recognition. PhD thesis,
Robotics Research Group, Department of Engineering
Science, University of Oxford, 2005.

[4] B. Fischer and J.M. Buhmann. Path-based clustering
for grouping of smooth curves and texture
segmentation. IEEE Transaction on Pattern Analysis and

Machine Intelligence, 25(4):513–518, 2003.
[5] David A. Forsyth and Jean Ponce. Computer Vision: A

Modern Approach. Prentice Hall, 2003.
[6] A. Fred. Finding consistent clusters in data partitions.

In Josef Kittler and Fabio Roli, editors, Proceedings of

Clustering in a Boosting Framework

[15] A. Strehl and J. Ghosh. Cluster ensembles-a
knowledge reuse framework for combining multiple
partitions. Journal of Machine Learning Research,
3:583–617, 2002.

[16] A. Topchy, A. K. Jain, and W. Punch. Clustering
ensembles: Models of consensus and weak partitions.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
27(12):1866–1881, 2005.

[17] A.P. Topchy, M.H.C. Law, A.K. Jain, and A.L. Fred.
Analysis of consensus partition in cluster ensemble.
In Proceedings of IEEE International Conference on Data Mining

(ICDM), 2004.
[18] A. Topchy, B. Minaei-Bidgoli, A. K. Jain, and W. F.

Punch. Adaptive clustering ensembles. In Proceedings

of the International Conference on Pattern Recognition (ICPR),
2004.

[19] P. Viswanath and K. Jayasurya. A fast and efficient
ensemble clustering method. In Proceedings of

International Conference on Pattern Recognition (ICPR), pages
720–723, 2006.

[20] U. von Luxburg and S. Ben-David. Towards a
statistical theory for clustering. In PASCAL Workshop on

Statistics and Optimization of Clustering, London, UK, 2005.
[21] S. Zhong and J. Ghosh. A unified framework for

model-based clustering. Journal of Machine Learning

Research, 4:1001–1037, 2003.
Third International Workshop on Multiple Classifier Systems,
volume LNCS 2096, pages 309–318. Springer, 2001.

[7] A. Fred and A.K. Jain. Data clustering using evidence
accumulation. In Proceedings of International Conference on

Pattern Recognition (ICPR), pages 276–280, 2002.
[8] Y. Freund and R. Schapire. Experiments with a new

boosting algorithm. In Proceedings of the Thirteenth

International Conference on Machine Learning (ICML), pages
148–156, 1996.

[9] Jerome Friedman, Trevor Hastie, and Robert
Tibshirani. Additive logistic regression: a statistical
view of boosting. The Annals of Statistics, 38(2):337–374,
2000.

[10] D. Frossyniotis, A. Likas, and A. Stafylopatis. A
clustering method based on boosting. Pattern Recognition

Letters, 25:641–654, 2004.
[11] Trevor Hastie, Robert Tibshirani, and Jerome

Friedman. The Elements of Statistical Learning: Data Mining,

Inference, and Prediction. Springer-Verlag, 2001.
[12] Anil K. Jain and Martin H. C. Law. Data clustering :

A user’s dilemma. In Proceedings of International Conference

on Pattern recognition and Machine Intelligence (PReMI), 2005.
[13] B. Minaei-Bidgoli, A. Topchy, and W.F. Punch.

Ensembles of partitions via data resampling. In
Proceedings of International Conference on Information

Technology: Coding and Computing (ITCC), 2004.
[14] H. Spath. Cluster Analysis Algorithms for Data Reduction and

Classification. Ellis Horwood, Chichester, UK., 1980.

	Introduction
	Methods
	Additive Modeling
	Learning
	Quantization Error
	Correlation

	CBoost.VQ
	Base Models
	Cluster Correspondence

	Experiments
	Methodology
	Datasets
	Results

	Conclusion
	Acknowledgement
	References

